Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Singular Kähler-Einstein metrics


Authors: Philippe Eyssidieux, Vincent Guedj and Ahmed Zeriahi
Journal: J. Amer. Math. Soc. 22 (2009), 607-639
MSC (2000): Primary 32W20, 32Q20, 32J27, 14J17
DOI: https://doi.org/10.1090/S0894-0347-09-00629-8
Published electronically: February 6, 2009
MathSciNet review: 2505296
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study degenerate complex Monge-Ampère equations of the form $ (\omega+dd^c\varphi)^n = e^{t \varphi}\mu$ where $ \omega$ is a big semi-positive form on a compact Kähler manifold $ X$ of dimension $ n$, $ t \in \mathbb{R}^+$, and $ \mu=f\omega^n$ is a positive measure with density $ f\in L^p(X,\omega^n)$, $ p>1$. We prove the existence and unicity of bounded $ \omega$-plurisubharmonic solutions. We also prove that the solution is continuous under a further technical condition.

In case $ X$ is projective and $ \omega=\psi^*\omega'$, where $ \psi:X\to V$ is a proper birational morphism to a normal projective variety, $ [\omega']\in NS_{\mathbb{R}} (V)$ is an ample class and $ \mu$ has only algebraic singularities, we prove that the solution is smooth in the regular locus of the equation.

We use these results to construct singular Kähler-Einstein metrics of non-positive curvature on projective klt pairs, in particular on canonical models of algebraic varieties of general type.


References [Enhancements On Off] (What's this?)

  • [A] T. Aubin: Équations du type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. (2) 102 (1978), no. 1, 63-95. MR 494932 (81d:53047)
  • [BT] E. Bedford & B. A. Taylor: A new capacity for plurisubharmonic functions. Acta Math. 149 (1982), no. 1-2, 1-40. MR 674165 (84d:32024)
  • [BM] E. Bierstone & P. Milman: Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Inv. Math. 128 (1997), 207-302. MR 1440306 (98e:14010)
  • [BCHM] C. Birkar, P. Cascini, C. D. Hacon, J. Mckernan: Existence of minimal models for varieties of log general type, arXiv:math/0610203.
  • [B1] Z. Blocki: Uniqueness and stability for the Monge-Ampère equation on compact Kaehler manifolds. Indiana Univ. Math. J. 52 (2003), no. 6, 1697-1701. MR 2021054 (2004m:32073)
  • [B2] Z. Blocki: The Monge-Ampère equation on compact Kähler manifolds. Lecture Notes of a course given at the Winter School in Complex Analysis, Toulouse, 24-328/02/2005.
  • [BK] Z. Blocki & S. Kolodziej: Regularization of plurisubharmonic functions on manifolds. Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089-2093 . MR 2299485 (2008a:32029)
  • [BGK] C. Boyer & K. Galicki & J. Kollár: Einstein metrics on spheres, Ann. Math. 162 (2005), 557-580. MR 2178969 (2006j:53058)
  • [Ca] E. Calabi: On Kähler manifolds with vanishing canonical class. Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 78-89. Princeton Univ. Press, Princeton, N.J. (1957). MR 0085583 (19:62b)
  • [CN] P. Cascini & G. La Nave: Kähler-Ricci Flow and the Minimal Model Program for Projective Varieties. Preprint arXiv math. AG/0603064.
  • [Ce] U. Cegrell: Pluricomplex energy. Acta Math. 180 (1998), no. 2, 187-217. MR 1638768 (99h:32016)
  • [Cor] A. Corti & F. Ambro & O. Fujino & C. Hacon & J. Kollár & J. Mc Kernan & H. Takagi: Extension theorems and the existence of flips, Flips for 3-folds and 4-folds (Alessio Corti, ed.), Oxford University Press (2007). MR 2352762 (2008j:14031)
  • [Deb] O. Debarre: Higher-dimensional algebraic geometry. Universitext. Springer-Verlag, New York (2001). xiv+233 pp. MR 1841091 (2002g:14001)
  • [Dem1] J. -P. Demailly: Monge-Ampère operators, Lelong numbers and intersection theory. Complex analysis and geometry, 115-193, Univ. Ser. Math. , Plenum, New York (1993). MR 1211880 (94k:32009)
  • [Dem2] J. -P. DEMAILLY: A numerical criterion for very ample line bundles. J. Differential Geom. 37 (1993), no. 2, 323-374. MR 1205448 (94d:14007)
  • [Dem3] J. -P. Demailly: Cohomology of $ q$-convex spaces in top degrees, Math. Zeitschrift 203 (1990) 283-295. MR 1055992 (91e:32014)
  • [DP] J. -P. Demailly & M. Paun: Numerical characterization of the Kähler cone of a compact Kähler manifold, Ann. of Math. 159 (2004), 1247-1274. MR 2113021 (2005i:32020)
  • [FN] J. E. Fornaess & R. Narasimhan: The Levi problem on complex space with singularities. Math. Ann. 248 (1980), 47-72. MR 569410 (81f:32020)
  • [GR] H. Grauert & R. Remmert: Coherent analytic sheaves. Grundlehren der Mathematischen Wissenschaften, 265. Springer-Verlag, Berlin (1984) xviii+249 pp. MR 755331 (86a:32001)
  • [G] V. Guedj: Approximation of currents on complex manifolds. Math. Ann. 313 (1999), no. 3, 437-474. MR 1678537 (2000b:32017)
  • [GZ1] V. Guedj & A. Zeriahi: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15 (2005), no. 4, 607-639. MR 2203165 (2006j:32041)
  • [GZ2] V. Guedj & A. Zeriahi: The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442-482. MR 2352488 (2008h:32056)
  • [HMcK] C. Hacon & J. Mckernan: On the existence of flips, math. AG/0507597; see also Extension theorems and the existence of flips, in Flips for 3-folds and 4-folds (Alessio Corti, ed.), Oxford University Press (2007), pp. 79-100. MR 2359343
  • [Ha1] R. Hartshorne: Algebraic geometry. Graduate Texts in Mathematics, 52. Springer-Verlag, New York-Heidelberg (1977). xvi+496 pp. MR 0463157 (57:3116)
  • [Ha2] R. Hartshorne: Stable reflexive sheaves. Math. Ann. 254 (1980), no. 2, 121-176. MR 597077 (82b:14011)
  • [Hi] H. Hironaka, Resolution of singularities over a field of characteristic zero. I,II. Annals of Math. 79 (1964), 109-326. MR 0199184 (33:7333)
  • [Hö] L. Hörmander: Notions of convexity, Birkhäuser (1994). MR 1301332 (95k:00002)
  • [Hu] A. T. Huckleberry: Subvarieties of homogeneous and almost homogeneous manifolds. Contributions to complex analysis and analytic geometry, 189-232, Aspects Math., E26, Vieweg, Braunschweig, 1994. MR 1319349 (96f:32061)
  • [Ka] Y. Kawamata: On the finiteness of generators of a pluricanonical ring for a $ 3$-fold of general type. Amer. J. Math. 106 (1984), no. 6, 1503-1512. MR 765589 (86j:14032)
  • [Kö] R. Kobayashi: Einstein-Kähler V-metrics on open Satake V-surfaces with isolated quotient singularities. Mathematische Annalen 272 (1985), 385-398. MR 799669 (87b:32050)
  • [KM] J. Kollár & S. Mori: Birational geometry of algebraic varieties. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998. viii+254 pp. MR 1658959 (2000b:14018)
  • [K1] S. Kolodziej: The complex Monge-Ampère equation. Acta Math. 180 (1998), no. 1, 69-117. MR 1618325 (99h:32017)
  • [K2] S. Kolodziej: The Monge-Ampère equation on compact Kähler manifolds. Indiana Univ. Math. J. 52 (2003), no. 3, 667-686 MR 1986892 (2004i:32062)
  • [K3] S. Kolodziej: The complex Monge-Ampère equation and pluripotential theory. Mem. Amer. Math. Soc. 178 (2005), no. 840, x+64 pp. MR 2172891 (2006d:32054)
  • [MO] K. Matsuki & M. Olsson: Kawamata-Viehweg as Kodaira vanishing for stacks. Math. Res. Letters 12 (2005), 207-217. . MR 2150877 (2006c:14023)
  • [Mo] S. Mori: Flip theorem and the existence of minimal models for $ 3$-folds. J. Amer. Math. Soc. 1 (1988), no. 1, 117-253. MR 924704 (89a:14048)
  • [Na] M. Nakamaye: Stable base loci of linear series, Math. Ann. 318 (2000), 837-847. MR 1802513 (2002a:14008)
  • [Pa] M. Paun: Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann. 310 (1998) (3), 411-421. MR 1612321 (99c:32042)
  • [R1] M. Reid: Canonical $ 3$-folds. Journées de Géométrie Algébrique d'Angers, Juillet 1979, pp. 273-310, Sijthoff & Noordhoff, Alphen aan den Rijn--Germantown, Md. (1980). MR 605348 (82i:14025)
  • [R2] M. Reid: Young person's guide to canonical singularities. Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345-414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI (1987). MR 927963 (89b:14016)
  • [R] R. Richberg: Stetige streng pseudokonvexe Funktionen, Math. Ann. 175 (1968), 257-286. MR 0222334 (36:5386)
  • [Sho] V. Shokurov: Prelimiting flips. Tr. Math. Inst. Steklova 240 (2003), 82-219. MR 1993750 (2004k:14024)
  • [S] N. Sibony: Dynamique des applications rationnelles de $ \mathbf{P}\sp k$. Dynamique et géométrie complexes (Lyon, 1997), ix-x, xi-xii, 97-185, Panor. Synthèses, 8, Soc. Math. France, Paris (1999). MR 1760844 (2001e:32026)
  • [Siu] Y. T. Siu: A vanishing theorem for semipositive line bundles over non-Kähler manifolds. J. Differential Geom. 19 (1984), no. 2, 431-452. MR 755233 (86c:32029)
  • [Siu2] Y. T. Siu: Multiplier ideal sheaves in complex and algebraic geometry. Sci. China Ser. A 48 (2005), suppl., 1-31. MR 2156488 (2007a:32023)
  • [ST] J. Song & G. Tian: The Kähler-Ricci flow on surfaces of positive Kodaira dimension. Inv. Math. 170 (2007), 609-653. MR 2357504
  • [Sg] K. Sugiyama: Einstein-Kähler Metrics on Minimal Varieties of General Type, in Recent Topics in Differential and Analytic Geometry, T. Ochiai, ed., Adv. Stud. in Pure Math. 18-I (1990), 417-443. MR 1145268 (93b:32047)
  • [T] G. Tian: Canonical metrics in Kähler geometry. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2000). MR 1787650 (2001j:32024)
  • [TZ] G. Tian & Z. Zhang: On the Kähler-Ricci flow of projective manifolds of general type. Chin. Ann. Math. 27 (2006), no. 2, 179-192. MR 2243679 (2007c:32029)
  • [Ts] H. Tsuji: Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281 (1988), no. 1, 123-133. MR 944606 (89e:53075)
  • [Y] S. T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. MR 480350 (81d:53045)
  • [Z] A. Zeriahi: Volume and capacity of sublevel sets of a Lelong class of plurisubharmonic functions. Indiana Univ. Math. J. 50 (2001), no. 1, 671-703. MR 1857051 (2002f:32059)
  • [Zha] Z. Zhang: On Degenerated Monge-Ampere Equations over Closed Kähler Manifolds, Int. Math. Res. Not. (2006), Art. ID 63640, 18 pp. MR 2233716 (2007b:32058)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 32W20, 32Q20, 32J27, 14J17

Retrieve articles in all journals with MSC (2000): 32W20, 32Q20, 32J27, 14J17


Additional Information

Philippe Eyssidieux
Affiliation: Institut Fourier - UMR5582, 100 rue des Maths, BP 74, 38402 St Martin d’Heres, France
Email: eyssi@fourier.ujf-grenoble.fr

Vincent Guedj
Affiliation: LATP, UMR 6632, CMI, Université de Provence, 39 Rue Joliot-Curie, 13453 Marseille cedex 13, France
Email: guedj@cmi.univ-mrs.fr

Ahmed Zeriahi
Affiliation: Laboratoire Emile Picard, UMR 5580, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, France
Email: zeriahi@math.ups-tlse.fr

DOI: https://doi.org/10.1090/S0894-0347-09-00629-8
Received by editor(s): March 17, 2006
Published electronically: February 6, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society