Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Rigorous derivation of the Gross-Pitaevskii equation with a large interaction potential

Authors: László Erdos, Benjamin Schlein and Horng-Tzer Yau
Journal: J. Amer. Math. Soc. 22 (2009), 1099-1156
MSC (2000): Primary 82C10, 35Q55
Published electronically: May 6, 2009
MathSciNet review: 2525781
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a system of $ N$ bosons in three dimensions interacting via a repulsive short range pair potential $ N^2V(N(x_i-x_j))$, where $ \mathbf{x}=(x_1, \ldots, x_N)$ denotes the positions of the particles. Let $ H_N$ denote the Hamiltonian of the system and let $ \psi_{N,t}$ be the solution to the Schrödinger equation. Suppose that the initial data $ \psi_{N,0}$ satisfies the energy condition

$\displaystyle \langle \psi_{N,0}, H_N \psi_{N,0} \rangle \leq C N $

and that the one-particle density matrix converges to a projection as $ N \to \infty$. Then, we prove that the $ k$-particle density matrices of $ \psi_{N,t}$ factorize in the limit $ N \to \infty$. Moreover, the one particle orbital wave function solves the time-dependent Gross-Pitaevskii equation, a cubic nonlinear Schrödinger equation with the coupling constant proportional to the scattering length of the potential $ V$. In a recent paper, we proved the same statement under the condition that the interaction potential $ V$ is sufficiently small. In the present work we develop a new approach that requires no restriction on the size of the potential.

References [Enhancements On Off] (What's this?)

  • 1. Adami, R.; Bardos, C.; Golse, F.; Teta, A.: Towards a rigorous derivation of the cubic nonlinear Schrödinger equation in dimension one. Asymptot. Anal. 40 (2004), no. 2, 93-108. MR 2104130 (2005g:35263)
  • 2. Adami, R.; Golse, F.; Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127 (2007), no. 6, 1193-1220. MR 2331036 (2008i:82055)
  • 3. Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science (269), 198 (1995).
  • 4. Bardos, C.; Golse, F.; Mauser, N.: Weak coupling limit of the $ N$-particle Schrödinger equation. Methods Appl. Anal. 7 (2000), 275-293. MR 1869286 (2003c:81215)
  • 5. Bourgain, J.: Global well-posednedd of defocusing 3D critical NLS in the radial case, Jour. Amer. Math. Soc. 12 (1999), 145-171. MR 1626257 (99e:35208)
  • 6. Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T.: Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $ \mathbb{R}^3$. Ann. of Math. (2) 167 (2008), no. 3, 767-865. MR 2415387
  • 7. Davis, K.B.; Mewes, M.-O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W.: Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. (75), 3969 (1995).
  • 8. Elgart, A.; Erdős, L.; Schlein, B.; Yau, H.-T.: Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Rat. Mech. Anal. 179 (2006), no. 2, 265-283. MR 2209131 (2007b:81310)
  • 9. Elgart, A.; Schlein, B.: Mean Field Dynamics of Boson Stars. Commun. Pure Appl. Math. 60 (2007), no. 4, 500-545. MR 2290709 (2009a:85001)
  • 10. Erdős, L.; Schlein, B.; Yau, H.-T.: Derivation of the Gross-Pitaevskii Hierarchy for the Dynamics of Bose-Einstein Condensate. Comm. Pure Appl. Math. 59 (2006), no. 12, 1659-1741. MR 2257859 (2007k:82070)
  • 11. Erdős, L.; Schlein, B.; Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167 (2007), 515-614. MR 2276262 (2007m:81258)
  • 12. Erdős, L.; Schlein, B.; Yau, H.-T.: Derivation of the Gross-Pitaevskii Equation for the Dynamics of Bose-Einstein Condensate. Preprint arXiv:math-ph/0606017. To appear in Ann. of Math.
  • 13. Erdős, L.; Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5 (2001), no. 6, 1169-1205. MR 1926667 (2004c:82075)
  • 14. Ginibre, J.; Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I.-II. Comm. Math. Phys. 66 (1979), no. 1, 37-76, and 68 (1979), no. 1, 45-68. MR 530915 (80h:81069); MR 0539736 (83h:81080)
  • 15. Ginibre, J.; Velo, G.: On a class of nonlinear Schrödinger equations with nonlocal interactions. Math Z. 170 (1980), 109-136. MR 562582 (82c:35018)
  • 16. Ginibre, J.; Velo, G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. 64 (1985), 363-401. MR 839728 (87i:35171)
  • 17. Hepp, K.: The classical limit for quantum mechanical correlation functions. Comm. Math. Phys. 35 (1974), 265-277. MR 0332046 (48:10373)
  • 18. Lieb, E.H.; Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88 (2002), 170409-1-4.
  • 19. Lieb, E.H.; Seiringer, R.; Solovej, J.P.; Yngvason, J.: The mathematics of the Bose gas and its condensation. Oberwolfach Seminars, 34. Birkhauser Verlag, Basel, 2005. MR 2143817 (2006e:82001)
  • 20. Lieb, E.H.; Seiringer, R.; Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev A 61 (2000), 043602.
  • 21. Kato, T.: On nonlinear Schrödinger equations, Ann. Inst. H. Poincare Phys. Theor. 46 (1987), 113-129. MR 877998 (88f:35133)
  • 22. Klainerman, S.; Machedon, M.: On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Commun. Math. Phys. 279 (2008), no. 1, 169-185. MR 2377632 (2009a:35236)
  • 23. Michelangeli, A.: Equivalent definitions of asymptotic 100% BEC. Il Nuovo Cimento B 123 (2008), no. 2, 181-192.
  • 24. Reed, M.; Simon, B.: Methods of modern mathematical physics: Scattering Theory. Volume 3. Academic Press, 1979. MR 529429 (80m:81085)
  • 25. Rodnianski, I.; Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Preprint arXiv:math-ph/0711.3087. To appear in Comm. Math. Phys.
  • 26. Rudin, W.: Functional analysis. McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. MR 0365062 (51:1315)
  • 27. Spohn, H.: Kinetic Equations from Hamiltonian Dynamics. Rev. Mod. Phys. 52 (1980), no. 3, 569-615. MR 578142 (81e:82010)
  • 28. Strauss, W.: Non-linear scattering theory at low energy. J. Funct. Anal. 41 (1981), 110-133. MR 614228 (83b:47074a)
  • 29. Yajima, K.: The $ W^{k,p}$-continuity of wave operators for Schrödinger operators. J. Math. Soc. Japan 47 (1995), no. 3, 551-581. MR 1331331 (97f:47049)
  • 30. Yajima, K.: The $ W^{k,p}$-continuity of wave operators for Schrödinger operators. Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 4, 94-98. MR 1222831 (94f:47013)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 82C10, 35Q55

Retrieve articles in all journals with MSC (2000): 82C10, 35Q55

Additional Information

László Erdos
Affiliation: Institute of Mathematics, University of Munich, Theresienstrasse 39, D-80333 Munich, Germany

Benjamin Schlein
Affiliation: DPMMS, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WB, United Kingdom

Horng-Tzer Yau
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Received by editor(s): April 15, 2008
Published electronically: May 6, 2009
Additional Notes: The first author was partially supported by SFB/TR12 Project from DFG
The second author was supported by a Kovalevskaja Award from the Humboldt Foundation
The third author was partially supported by NSF grants DMS-0602038, 0757425, and 0804279
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society