Skip to Main Content

Journal of the American Mathematical Society

Published by the American Mathematical Society, the Journal of the American Mathematical Society (JAMS) is devoted to research articles of the highest quality in all areas of mathematics.

ISSN 1088-6834 (online) ISSN 0894-0347 (print)

The 2020 MCQ for Journal of the American Mathematical Society is 4.83.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On $P$-orderings, rings of integer-valued polynomials, and ultrametric analysis
HTML articles powered by AMS MathViewer

by Manjul Bhargava
J. Amer. Math. Soc. 22 (2009), 963-993
DOI: https://doi.org/10.1090/S0894-0347-09-00638-9
Published electronically: May 27, 2009

Abstract:

We introduce two new notions of “$P$-ordering” and use them to define a three-parameter generalization of the usual factorial function. We then apply these notions of $P$-orderings and factorials to some classical problems in two distinct areas, namely: 1) the study of integer-valued polynomials and 2) $P$-adic analysis.

Specifically, we first use these notions of $P$-orderings and factorials to construct explicit PĂłlya-style regular bases for two natural families of rings of integer-valued polynomials defined on an arbitrary subset of a Dedekind domain.

Second, we classify “smooth” functions on an arbitrary compact subset $S$ of a local field, by constructing explicit interpolation series (i.e., orthonormal bases) for the Banach space of functions on $S$ satisfying any desired conditions of continuous differentiability or local analyticity. Our constructions thus extend Mahler’s Theorem (classifying the functions that are continuous on $\mathbb {Z}_p$) to a very general setting. In particular, our constructions prove that, for any $\epsilon >0$, the functions in any of the above Banach spaces can be $\epsilon$-approximated by polynomials (with respect to their respective Banach norms). Thus we obtain the non-Archimedean analogues of the classical polynomial approximation theorems in real and complex analysis proven by Weierstrass, de la VallĂ©e-Poussin, and Bernstein. Our proofs are effective.

References
  • Yvette Amice, Interpolation $p$-adique, Bull. Soc. Math. France 92 (1964), 117–180 (French). MR 188199, DOI 10.24033/bsmf.1606
  • Daniel Barsky, Fonctions $k$-lipschitziennes sur un anneau local et polynĂŽmes Ă  valeurs entiĂšres, Bull. Soc. Math. France 101 (1973), 397–411 (French). MR 371863, DOI 10.24033/bsmf.1766
  • Bernstein S. Bernstein, Leçons sur les propriĂ©tĂ©s extrĂ©males de la meilleure approximation des fonctions analytiques d’une variable rĂ©elle, Paris, 1926.
  • Manjul Bhargava, $P$-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math. 490 (1997), 101–127. MR 1468927, DOI 10.1515/crll.1997.490.101
  • Manjul Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000), no. 9, 783–799. MR 1792411, DOI 10.2307/2695734
  • BCY M. Bhargava, P.-J. Cahen, and J. Yeramian, Finite generation properties for rings of integer-valued polynomials, J. Algebra, to appear.
  • Manjul Bhargava and Kiran S. Kedlaya, Continuous functions on compact subsets of local fields, Acta Arith. 91 (1999), no. 3, 191–198. MR 1735672, DOI 10.4064/aa-91-3-191-198
  • Paul-Jean Cahen, Polynomes Ă  valeurs entiĂšres, Canadian J. Math. 24 (1972), 747–754 (French). MR 309923, DOI 10.4153/CJM-1972-071-2
  • Paul-Jean Cahen and Jean-Luc Chabert, Integer-valued polynomials, Mathematical Surveys and Monographs, vol. 48, American Mathematical Society, Providence, RI, 1997. MR 1421321, DOI 10.1090/surv/048
  • Paul-Jean Cahen, Jean-Luc Chabert, and K. Alan Loper, High dimension PrĂŒfer domains of integer-valued polynomials, J. Korean Math. Soc. 38 (2001), no. 5, 915–935. Mathematics in the new millennium (Seoul, 2000). MR 1849332
  • Paul-Jean Cahen and Jean-Luc Chabert, On the ultrametric Stone-Weierstrass theorem and Mahler’s expansion, J. ThĂ©or. Nombres Bordeaux 14 (2002), no. 1, 43–57 (English, with English and French summaries). MR 1925989, DOI 10.5802/jtnb.345
  • L. Carlitz, A note on integral-valued polynomials, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 294–299. MR 0108462, DOI 10.1016/S1385-7258(59)50033-5
  • N. G. de Bruijn, Some classes of integer-valued functions, Nederl. Akad. Wetensch. Proc. Ser. A. 58=Indag. Math. 17 (1955), 363–367. MR 0071450, DOI 10.1016/S1385-7258(55)50051-5
  • Jean DieudonnĂ©, Sur les fonctions continues $p$-adiques, Bull. Sci. Math. (2) 68 (1944), 79–95 (French). MR 13142
  • Jean Fresnel and Marius van der Put, Rigid analytic geometry and its applications, Progress in Mathematics, vol. 218, BirkhĂ€user Boston, Inc., Boston, MA, 2004. MR 2014891, DOI 10.1007/978-1-4612-0041-3
  • Gilbert Gerboud, PolynĂŽmes Ă  valeurs entiĂšres sur l’anneau des entiers de Gauss, C. R. Acad. Sci. Paris SĂ©r. I Math. 307 (1988), no. 8, 375–378 (French, with English summary). MR 965801
  • H. Gunji and D. L. McQuillan, Polynomials with integral values, Proc. Roy. Irish Acad. Sect. A 78 (1978), no. 1, 1–7. MR 472801
  • Irving Kaplansky, The Weierstrass theorem in fields with valuations, Proc. Amer. Math. Soc. 1 (1950), 356–357. MR 35760, DOI 10.1090/S0002-9939-1950-0035760-3
  • JosĂ© G. Llavona, Approximation of continuously differentiable functions, North-Holland Mathematics Studies, vol. 130, North-Holland Publishing Co., Amsterdam, 1986. Notas de MatemĂĄtica [Mathematical Notes], 112. MR 870155
  • K. Mahler, An interpolation series for continuous functions of a $p$-adic variable, J. Reine Angew. Math. 199 (1958), 23–34. MR 95821, DOI 10.1515/crll.1958.199.23
  • WƂadysƂaw Narkiewicz, Polynomial mappings, Lecture Notes in Mathematics, vol. 1600, Springer-Verlag, Berlin, 1995. MR 1367962, DOI 10.1007/BFb0076894
  • Ostrowski A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919) 117-124. Polya G. PĂłlya, Über ganzwertige ganze Funktionen, Rend. Circ. Mat. Palermo 40 (1915) 1-16. Polya2 G. PĂłlya, Über ganzwertige Polynome in algebraischen Zahlkörpern, J. reine angew. Math. 149 (1919) 97-116.
  • W. H. Schikhof, Ultrametric calculus, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 1984. An introduction to $p$-adic analysis. MR 791759
  • Valle C. de la VallĂ©e-Poussin, Sur l’approximation des fonctions d’une variable rĂ©elle et de leurs dĂ©rivĂ©es par des polynĂŽmes et des suites finies de Fourier, Bull. Acad. Sci. Belgique (1908), 193–254.
  • Ann Verdoodt, Orthonormal bases for non-Archimedean Banach spaces of continuous functions, $p$-adic functional analysis (PoznaƄ, 1998) Lecture Notes in Pure and Appl. Math., vol. 207, Dekker, New York, 1999, pp. 323–331. MR 1703503
  • Carl G. Wagner, Interpolation series for continuous functions on $\pi$-adic completions of $\textrm {GF}(q,\,x).$, Acta Arith. 17 (1970/71), 389–406. MR 282973, DOI 10.4064/aa-17-4-389-406
  • Carl G. Wagner, Polynomials over $\textrm {GF}(q,x)$ with integral-valued differences, Arch. Math. (Basel) 27 (1976), no. 5, 495–501. MR 417137, DOI 10.1007/BF01224707
  • Weierstrauss K. Weierstrass, Über die analytische Darstellbarkeit sogenannter willkĂŒrlicher Functionen einer reellen VerĂ€nderlichen, Sitzungsberichte der Königlich Preu$\beta$ischen Akademie der Wissenschaften zu Berlin, 1885 (II).
  • Zifeng Yang, Locally analytic functions over completions of $\textbf {F}_r[U]$, J. Number Theory 73 (1998), no. 2, 451–458. MR 1657996, DOI 10.1006/jnth.1998.2308
  • Yeramian J. Yeramian, Anneaux de Bhargava, Ph.D. Thesis, UniversitĂ© Aix-Marseille, 2004.
Similar Articles
Bibliographic Information
  • Manjul Bhargava
  • Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
  • MR Author ID: 623882
  • Email: bhargava@math.princeton.edu
  • Received by editor(s): February 25, 2008
  • Published electronically: May 27, 2009
  • © Copyright 2009 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: J. Amer. Math. Soc. 22 (2009), 963-993
  • MSC (2000): Primary 11C08, 11S80; Secondary 13F20, 13B25
  • DOI: https://doi.org/10.1090/S0894-0347-09-00638-9
  • MathSciNet review: 2525777