Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Actions of $ \mathbb{F}_\infty$ whose II$ _1$ factors and orbit equivalence relations have prescribed fundamental group


Authors: Sorin Popa and Stefaan Vaes
Journal: J. Amer. Math. Soc. 23 (2010), 383-403
MSC (2000): Primary 46L10; Secondary 37A20, 28D15
Published electronically: August 26, 2009
MathSciNet review: 2601038
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that given any subgroup $ \mathcal{F}$ of $ \mathbb{R}_+$ which is either countable or belongs to a certain ``large'' class of uncountable subgroups, there exist continuously many free ergodic measure-preserving actions $ \sigma_i$ of the free group with infinitely many generators $ \mathbb{F}_\infty$ on probability measure spaces $ (X_i,\mu_i)$ such that their associated group measure space II$ _1$ factors $ M_i=\operatorname{L}^\infty(X_i) \rtimes_{\sigma_i} \mathbb{F}_\infty$ and orbit equivalence relations $ \mathcal{R}_i=\mathcal{R} (\mathbb{F}_\infty {\overset{}{\curvearrowright}} X_i)$ have fundamental group equal to $ \mathcal{F}$ and with $ M_i$ (respectively $ \mathcal {R}_i$) stably non-isomorphic. Moreover, these actions can be taken so that $ \mathcal{R}_i$ has no outer automorphisms and any automorphism of $ M_i$ is unitarily conjugate to an automorphism that acts trivially on the subalgebra $ \operatorname{L}^\infty(X_i)$ of $ M_i$.


References [Enhancements On Off] (What's this?)

  • 1. J. Aaronson and M. Nadkarni, $ L_\infty$ eigenvalues and $ L_2$ spectra of non-singular transformations. Proc. London Math. Soc. 55 (1987), 538-570. MR 907232 (88j:28012)
  • 2. M. Burger, Kazhdan constants for $ \operatorname{SL}(3,\mathbb{Z})$, J. Reine Angew. Math. 413 (1991), 36-67. MR 1089795 (92c:22013)
  • 3. A. Connes, Une classification des facteurs de type III, Ann. Ecole Norm. Sup. 6 (1973), 133-252. MR 0341115 (49:5865)
  • 4. A. Connes, A factor of type II$ _1$ with countable fundamental group. J. Operator Theory 4 (1980), 151-153. MR 587372 (81j:46099)
  • 5. A. Connes and V. Jones, A II$ _1$ factor with two nonconjugate Cartan subalgebras. Bull. Amer. Math. Soc. (N.S.) 6 (1982), 211-212. MR 640947 (83d:46074)
  • 6. J. Feldman and C.C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras I, II, Trans. Amer. Math. Soc. 234 (1977), 289-324, 325-359. MR 0578656 (58:28261a); MR 0578730 (58:28261b)
  • 7. A. Furman, Orbit equivalence rigidity, Ann. of Math. (2) 150 (1999), 1083-1108. MR 1740985 (2001a:22018)
  • 8. A. Furman, Outer automorphism groups of some ergodic equivalence relations. Comment. Math. Helv. 80 (2005), 157-196. MR 2130572 (2006h:37007)
  • 9. D. Gaboriau, Invariants $ l^2$ de relations d'équivalence et de groupes. Publ. Math. Inst. Hautes Études Sci. 95 (2002), 93-150. MR 1953191 (2004b:22009)
  • 10. D. Gaboriau, Coût des relations d'équivalence et des groupes. Invent. Math. 139 (2000), 41-98. MR 1728876 (2001f:28030)
  • 11. D. Gaboriau and S. Popa, An uncountable family of nonorbit equivalent actions of $ \mathbb{F}_n$. J. Amer. Math. Soc. 18 (2005), 547-559. MR 2138136 (2007b:37005)
  • 12. S.L. Gefter, Outer automorphism group of the ergodic equivalence relation generated by translations of dense subgroup of compact group on its homogeneous space. Publ. Res. Inst. Math. Sci. 32 (1996), 517-538. MR 1409801 (98m:28040)
  • 13. S.L. Gefter and V.Ya. Golodets, Fundamental groups for ergodic actions and actions with unit fundamental groups. Publ. Res. Inst. Math. Sci. 24 (1988), 821-847. MR 1000122 (91e:46090)
  • 14. T. Giordano and G. Skandalis, Krieger factors isomorphic to their tensor square and pure point spectrum flows. J. Funct. Anal. 64 (1985), 209-226. MR 812392 (87h:46127)
  • 15. G. Hjorth, A lemma for cost attained. Ann. Pure Appl. Logic 143 (2006), 87-102. MR 2258624 (2007g:37004)
  • 16. B. Host, J.-F. Méla and F. Parreau, Non-singular transformations and spectral analysis of measures. Bull. Soc. Math. France 119 (1991), 33-90. MR 1101939 (93d:43002)
  • 17. A. Ioana, J. Peterson and S. Popa, Amalgamated free products of $ w$-rigid factors and calculation of their symmetry groups. Acta Math. 200 (2008), 85-153. MR 2386109 (2009a:46119)
  • 18. J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques. Hermann, Paris, 1963. MR 0160065 (28:3279)
  • 19. A.S. Kechris, Classical descriptive set theory. Graduate Texts in Mathematics 156. Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
  • 20. B. Le Gac, Some properties of Borel subgroups of real numbers. Proc. Amer. Math. Soc. 87 (1983), 677-680. MR 687640 (84m:28022)
  • 21. V. Mandrekar, M. Nadkarni and D. Patil, Singular invariant measures on the line. Studia Math. 35 (1970), 1-13. MR 0259069 (41:3711)
  • 22. N. Monod and Y. Shalom, Orbit equivalence rigidity and bounded cohomology. Ann. of Math. (2) 164 (2006), 825-878. MR 2259246 (2007k:37007)
  • 23. F. Murray and J. von Neumann, On rings of operators, Ann. of Math. (2) 37 (1936), 116-229. MR 1503275
  • 24. F. Murray and J. von Neumann, Rings of operators IV, Ann. of Math. (2) 44 (1943), 716-808. MR 0009096 (5:101a)
  • 25. R. Nicoara, S. Popa and R. Sasyk, On II$ _1$ factors arising from $ 2$-cocycles of $ w$-rigid groups. J. Funct. Anal. 242 (2007), 230-246. MR 2274021 (2007h:46075)
  • 26. N. Ozawa and S. Popa, On a class of $ \mathrm{II}_1$ factors with at most one Cartan subalgebra. Ann. of Math. (2), to appear. arXiv:0706.3623
  • 27. S. Popa, Correspondences, INCREST preprint No. 56/1986, www.math.ucla.edu/~popa/ preprints.html.
  • 28. S. Popa, On a class of type II$ _1$ factors with Betti numbers invariants. Ann. of Math. (2) 163 (2006), 809-899. MR 2215135 (2006k:46097)
  • 29. S. Popa, Strong rigidity of II$ _1$ factors arising from malleable actions of $ w$-rigid groups II, Invent. Math. 165 (2006), 409-452. MR 2231962 (2007h:46084)
  • 30. S. Popa, On the superrigidity of malleable actions with spectral gap, J. of Amer. Math. Soc. 21 (2008), 981-1000. MR 2425177 (2009e:46056)
  • 31. S. Popa, Some computations of $ 1$-cohomology groups and construction of non-orbit-equivalent actions. J. Inst. of Math. Jussieu 5 (2006), 309-332. MR 2225044 (2007b:37008)
  • 32. S. Popa and D. Shlyakhtenko, Universal properties of $ \operatorname{L}(\mathbb{F}_\infty)$ in subfactor theory, Acta Math. 191 (2003), 225-257. MR 2051399 (2005b:46140)
  • 33. S. Popa and S. Vaes, Strong rigidity of generalized Bernoulli actions and computations of their symmetry groups. Adv. Math. 217 (2008), 833-872. MR 2370283 (2009c:37004)
  • 34. S. Popa and S. Vaes, On the fundamental group of II$ _1$ factors and equivalence relations arising from group actions. To appear in Noncommutative geometry, Proceedings of the Conference in honor of A.Connes' 60th birthday. arXiv:0810.0706
  • 35. I.M. Singer, Automorphisms of finite factors. Amer. J. Math. 177 (1955), 117-133. MR 0066567 (16:597f)
  • 36. A. Törnquist, Orbit equivalence and actions of $ \mathbb{F}_n$. J. Symbolic Logic 71 (2006), 265-282. MR 2210067 (2007a:37005)
  • 37. S. Vaes, Explicit computations of all finite index bimodules for a family of II$ _1$ factors. Ann. Sci. Ecole Norm. Sup. 41 (2008), 743-788. MR 2504433

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2000): 46L10, 37A20, 28D15

Retrieve articles in all journals with MSC (2000): 46L10, 37A20, 28D15


Additional Information

Sorin Popa
Affiliation: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90095-1555
Email: popa@math.ucla.edu

Stefaan Vaes
Affiliation: Department of Mathematics, K.U.Leuven, Celestijnenlaan 200B, B–3001 Leuven, Belgium
Email: stefaan.vaes@wis.kuleuven.be

DOI: http://dx.doi.org/10.1090/S0894-0347-09-00644-4
Keywords: Fundamental group of II$_1$ factors, fundamental group of II$_1$ equivalence relations, outer automorphism group, actions of free groups, rigid actions, deformation/rigidity.
Received by editor(s): June 3, 2008
Published electronically: August 26, 2009
Additional Notes: The first author was partially supported by NSF Grant DMS-0601082
The second author was partially supported by Research Programme G.0231.07 of the Research Foundation—Flanders (FWO) and the Marie Curie Research Training Network Non-Commutative Geometry MRTN-CT-2006-031962. The second author would like to thank the Department of Mathematics at UCLA for their warm hospitality during the work on this paper.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.