Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

The dodecahedral conjecture


Authors: Thomas C. Hales and Sean McLaughlin
Journal: J. Amer. Math. Soc. 23 (2010), 299-344
MSC (2010): Primary 52C17
Published electronically: October 27, 2009
Supplement: Additional materials posted with this article.
MathSciNet review: 2601036
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This article gives a summary of a proof of Fejes Tóth's dodecahedral conjecture: the volume of a Voronoi polyhedron in a three-dimensional packing of balls of unit radius is at least the volume of a regular dodecahedron of unit inradius.


References [Enhancements On Off] (What's this?)

  • 1. G. Alefeld and J. Herzeberger.
    Introduction to Interval Computations.
    Academic Press, 1983. MR 733988 (85d:65001)
  • 2. G. Bauer.
    Formalizing Plane Graph Theory - Towards a Formalized Proof of the Kepler Conjecture.
    Ph.D. thesis, Technische Universität München, 2006.
  • 3. Y. Bertot and P. Castéran.
    Interactive theorem proving and program development: Coq'Art: the Calculus of Inductive Constructions.
    Texts in Theoretical Computer Science. Springer-Verlag, 2004. MR 2229784 (2007i:68001)
  • 4. K. Bezdek.
    Isoperimetric inequalities and the dodecahedral conjecture.
    In International Journal of Mathematics, volume 8/6, pages 759-780, 1997. MR 1470853 (98k:52043)
  • 5. K. Bezdek.
    On a stronger form of Rogers's lemma and the minimum surface area of Voronoi cells in unit ball packings.
    In Journal fur die Reine und Angewandte Mathematik, volume 518, pages 131-143, 2000. MR 1739407 (2001b:52033)
  • 6. R. H. Byrd, J. N. Ocedal, and R. A. Waltz.
    KNITRO: An integrated package for nonlinear optimization.
    In G. di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, pages 35-59. Springer-Verlag, 2006. MR 2194566 (2006h:90001)
  • 7. G. E. Collins.
    Quantifier elimination for real closed fields by cylindrical algebraic decomposition.
    In H. Brakhage, editor, Automata Theory and Formal Languages, volume 33 of Lecture Notes in Computer Science, pages 134-183, Berlin, 1975. Springer-Verlag. MR 0403962 (53:7771)
  • 8. L. Fejes Tóth.
    Uber die dichteste Kugellagerung.
    In Mathematische Zeitschrift, volume 48, pages 676-684, 1943. MR 0009129 (5:106f)
  • 9. L. Fejes Tóth.
    Regular Figures.
    Pergamon Press, Oxford, London, New York, 1964. MR 0165423 (29:2705)
  • 10. L. Fejes Tóth.
    Lagerungen in der Ebene auf der Kugel und im Raum.
    Springer-Verlag, Berlin-New York, second edition, 1972. MR 0353117 (50:5603)
  • 11. G. Gonthier.
    A computer-checked proof of the four colour theorem.
    Unpublished manuscript, 2005.
  • 12. T. Hales and S. McLaughlin.
    An appendix to the dodecahedral conjecture.
    http://www.ams.org/jams.
  • 13. T. C. Hales.
    The Flyspeck Fact Sheet, 2003 (revised 2007).
    http://code.google.com/p/flyspeck/wiki/FlyspeckFactSheet.
  • 14. T. C. Hales.
    The status of the Kepler conjecture.
    In Mathematical Intelligencer, volume 16/3, pages 47-58, 1994. MR 1281754 (95g:52033)
  • 15. T. C. Hales.
    Sphere packings I.
    In Discrete and Computational Geometry, volume 17, pages 1-51, 1997. MR 1418278 (97k:52025)
  • 16. T. C. Hales.
    Some algorithms arising in the proof of the Kepler conjecture.
    In Discrete and Computational Geometry, volume 25, pages 489-507, 2003. MR 2038488 (2005b:52047)
  • 17. T. C. Hales.
    The Flyspeck Project, 2007.
    http://code.google.com/p/flyspeck.
  • 18. T. C. Hales and S. P. Ferguson.
    The Kepler conjecture.
    Discrete and Computational Geometry, 36(1):1-269, 2006. MR 2229658 (2007d:52022)
  • 19. T. C. Hales and S. McLaughlin.
    A proof of the dodecahedral conjecture (1998 version).
    http://arxiv.org/abs/math/9811079v1.
  • 20. T. C. Hales and S. McLaughlin.
    A proof of the dodecahedral conjecture (2002 version).
    http://arxiv.org/abs/math/9811079v2.
  • 21. E. Harshbarger.
    Saturated packings and Voronoi cells, 1996.
    http://www.ericharshbarger.org/voronoi.html.
  • 22. J. F. Hart et al.
    Computer Approximations.
    John Wiley & Sons, 1968.
  • 23. L. Hörmander.
    The Analysis of Linear Partial Differential Operators II, volume 257 of Grundlehren der mathematischen Wissenschaften.
    Springer-Verlag, 1983. MR 705278 (85g:35002b)
  • 24. W.-Y. Hsiang.
    On the sphere packing problem and the proof of Kepler's conjecture.
    In International Journal of Mathematics, volume 4/5, pages 739-831, 1993. MR 1245351 (95g:52032)
  • 25. IEEE Standards Committee 754.
    IEEE Standard for binary floating-point arithmetic, ANSI/IEEE Standard 754-1985.
    Institute of Electrical and Electronics Engineers, New York, 1985.
  • 26. R. B. Kearfott.
    Rigorous Global Search: Continuous Problems.
    Kluwer, Dordrecht, Netherlands, 1996. MR 1422659 (97i:90003)
  • 27. C. Lawrence, J. L. Zhou, and A. L. Tits.
    A C code for solving (large scale) constrained nonlinear (minimax) optimization problems, generating iterates satisfying all inequality constraints.
    Technical Report TR-94-16r1, Institute for Systems Research, University of Maryland, 1997.
    http://www.aemdesign.com/download-cfsqp/cfsqp-manual.pdf.
  • 28. S. McLaughlin.
    KeplerCode: Computer resources for the Kepler and Dodecahedral Conjectures.
    http://code.google.com/p/kepler-code/.
  • 29. D. J. Muder.
    Putting the best face on a Voronoi polyhedron.
    In Proceedings of the London Mathematical Society, volume 3/56, pages 329-348, 1988. MR 922659 (89e:52029)
  • 30. D. J. Muder.
    A new bound on the local density of sphere packings.
    In Discrete and Computational Geometry, volume 10, pages 351-375, 1993. MR 1243334 (94h:52041)
  • 31. T. Nipkow, G. Bauer, and P. Schultz.
    Flyspeck I: Tame Graphs.
    In U. Furbach and N. Shankar, editors, International Joint Conference on Automated Reasoning, volume 4130 of Lecture Notes in Computer Science, pages 21-35. Springer-Verlag, 2006. MR 2354670
  • 32. S. Obua.
    Flyspeck II: The Basic Linear Programs.
    Ph.D. thesis, Technische Universität München, 2008.
  • 33. L. Paulson.
    Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer Science.
    Springer-Verlag, 1994. MR 1313213 (96i:68072)
  • 34. W. H. Press et al.
    Numerical Recipes in C, Chapter 20. Less-Numerical Algorithms.
    Cambridge University Press, second edition, 1992. MR 1201159 (93i:65001b)
  • 35. C. A. Rogers.
    The packing of equal spheres.
    In Journal of the London Mathematical Society, volume 3/8, pages 609-620, 1958. MR 0102052 (21:847)
  • 36. R. Zumkeller.
    Formal global optimisation with Taylor models.
    In U. Furbach and N. Shankar, editors, International Joint Conference on Automated Reasoning, volume 4130 of Lecture Notes in Computer Science, pages 408-422. Springer-Verlag, 2006. MR 2361338
  • 37. R. Zumkeller.
    Rigorous Global Optimization.
    Ph.D. thesis, Ecole Polytechnique, 2008.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 52C17

Retrieve articles in all journals with MSC (2010): 52C17


Additional Information

Thomas C. Hales
Affiliation: Department of Mathematics, University of Pittsburgh, 301 Thackeray Hall, Pittsburgh, Pennsylvania 15260
Email: hales@pitt.edu

Sean McLaughlin
Affiliation: Department of Mathematics, Carnegie Mellon University, Wean Hall 6113, Pittsburgh, Pennsylvania 15213
Email: seanmcl@gmail.com

DOI: http://dx.doi.org/10.1090/S0894-0347-09-00647-X
Received by editor(s): November 1, 1998
Published electronically: October 27, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.