Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Existence of minimal models for varieties of log general type II


Authors: Christopher D. Hacon and James McKernan
Journal: J. Amer. Math. Soc. 23 (2010), 469-490
MSC (2010): Primary 14E30
DOI: https://doi.org/10.1090/S0894-0347-09-00651-1
Published electronically: November 13, 2009
MathSciNet review: 2601040
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Assuming finite generation in dimension $ n-1$, we prove that pl-flips exist in dimension $ n$.


References [Enhancements On Off] (What's this?)

  • 1. Florin Ambro, Restrictions of log canonical algebras of general type, J. Math. Sci. Univ. Tokyo 13 (2006), no. 3, 409–437. MR 2284409
  • 2. C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., posted on November 13, 2009, PII: S 0894-0347(09)00649-3.
  • 3. Alessio Corti, 3-fold flips after Shokurov, Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., vol. 35, Oxford Univ. Press, Oxford, 2007, pp. 18–48. MR 2359340, https://doi.org/10.1093/acprof:oso/9780198570615.003.0002
  • 4. Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţă, Michael Nakamaye, and Mihnea Popa, Asymptotic invariants of base loci, Ann. Inst. Fourier (Grenoble) 56 (2006), no. 6, 1701–1734 (English, with English and French summaries). MR 2282673
  • 5. Christopher D. Hacon and James McKernan, Boundedness of pluricanonical maps of varieties of general type, Invent. Math. 166 (2006), no. 1, 1–25. MR 2242631, https://doi.org/10.1007/s00222-006-0504-1
  • 6. Alessio Corti (ed.), Flips for 3-folds and 4-folds, Oxford Lecture Series in Mathematics and its Applications, vol. 35, Oxford University Press, Oxford, 2007. MR 2352762
  • 7. Yujiro Kawamata, On the extension problem of pluricanonical forms, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 193–207. MR 1718145, https://doi.org/10.1090/conm/241/03636
  • 8. János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959
  • 9. Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471
    Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472
  • 10. Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471
    Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472
  • 11. Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208
  • 12. V. V. Shokurov, Prelimiting flips, Tr. Mat. Inst. Steklova 240 (2003), no. Biratsion. Geom. Lineĭn. Sist. Konechno Porozhdennye Algebry, 82–219; English transl., Proc. Steklov Inst. Math. 1(240) (2003), 75–213. MR 1993750
  • 13. Y-T. Siu, A General Non-Vanishing Theorem and an Analytic Proof of the Finite Generation of the Canonical Ring. arXiv:math.AG/0610740
  • 14. Yum-Tong Siu, Invariance of plurigenera, Invent. Math. 134 (1998), no. 3, 661–673. MR 1660941, https://doi.org/10.1007/s002220050276
  • 15. Endre Szabó, Divisorial log terminal singularities, J. Math. Sci. Univ. Tokyo 1 (1994), no. 3, 631–639. MR 1322695
  • 16. Shigeharu Takayama, Pluricanonical systems on algebraic varieties of general type, Invent. Math. 165 (2006), no. 3, 551–587. MR 2242627, https://doi.org/10.1007/s00222-006-0503-2
  • 17. H. Tsuji, Pluricanonical systems of projective varieties of general type. arXiv:math.AG/ 9909021

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14E30

Retrieve articles in all journals with MSC (2010): 14E30


Additional Information

Christopher D. Hacon
Affiliation: Department of Mathematics, University of Utah, 155 South 1400 East, JWB 233, Salt Lake City, Utah 84112
Email: hacon@math.utah.edu

James McKernan
Affiliation: Department of Mathematics, University of California at Santa Barbara, Santa Barbara, California 93106 and Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
Email: mckernan@math.ucsb.edu, mckernan@math.mit.edu

DOI: https://doi.org/10.1090/S0894-0347-09-00651-1
Received by editor(s): August 13, 2008
Published electronically: November 13, 2009
Additional Notes: The first author was partially supported by NSF research grant no. 0456363 and an AMS Centennial fellowship.
The second author was partially supported by NSA grant no. H98230-06-1-0059 and NSF grant no. 0701101
The authors would like to thank F. Ambro, C. Birkar, P. Cascini, J. A. Chen, A. Corti, O. Fujino, S. Keel, J. Kollár and the referee for valuable suggestions.
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.