ESSENTIAL p-DIMENSION OF PGL(p^2)

ALEXANDER S. MERKURJEV

1. Introduction

Informally, the essential dimension of an “algebraic structure” over a field F is the smallest number of parameters required to define this structure over a field extension of F (see [1] or [11]). Thus, the essential dimension measures the complexity of the structure.

Let p be a prime integer. The essential p-dimension of an “algebraic structure” measures the complexity of the structure modulo the “effects of degree prime to p” (see [12]). In practice, the essential p-dimension is easier to compute than the essential dimension.

The formal definition of the essential (p-)dimension is as follows. Let p denote either a prime integer or 0. An integer k is said to be prime to p if k is prime to p when $p > 0$ and $k = 1$ when $p = 0$. Let F be a field. Consider the category Fields/F of field extensions of F and field homomorphisms over F. Let $\mathcal{F}: \text{Fields}/F \to \text{Sets}$ be a functor (an “algebraic structure”) and $K, E \in \text{Fields}/F$. An element $\alpha \in \mathcal{F}(E)$ is said to be p-defined over K (and K is called a field of p-definition of α) if there exist a finite field extension E'/E of degree prime to p (so $E' = E$ if $p = 0$), a field homomorphism $K \to E'$ over F and an element $\beta \in \mathcal{F}(K)$ such that the image of α under the map $\mathcal{F}(E) \to \mathcal{F}(E')$ coincides with the image of β under the map $\mathcal{F}(K) \to \mathcal{F}(E')$. The essential p-dimension of α, denoted $\text{ed}_p^P(\alpha)$, is the least transcendence degree $\text{tr. deg}_p(K)$ over all fields of p-definition K of α. The essential p-dimension of the functor \mathcal{F} is

$$\text{ed}_p(\mathcal{F}) = \sup\{\text{ed}_p^P(\alpha)\},$$

where the supremum is taken over fields $E \in \text{Fields}/F$ and all $\alpha \in \mathcal{F}(E)$.

We write $\text{ed}(\mathcal{F})$ for $\text{ed}_0(\mathcal{F})$ and simply call $\text{ed}(\mathcal{F})$ the essential dimension of \mathcal{F}. Clearly, $\text{ed}(\mathcal{F}) \geq \text{ed}_p(\mathcal{F})$ for all p.

Let G be an algebraic group over F. The essential p-dimension of G is the essential p-dimension of the functor $\mathcal{F}_G: \text{Fields}/F \to \text{Sets}$ taking a field E to the set of isomorphism classes of all G-torsors (principal homogeneous G-spaces) over $\text{Spec}(E)$.

If $G = \text{PGL}_n$ over F, the functor \mathcal{F}_G is isomorphic to the functor taking a field E to the set of isomorphism classes of central simple E-algebras of degree n. Let p be a prime integer and let p^r be the highest power of p dividing n. Then $\text{ed}_p(\text{PGL}_F(n)) = \text{ed}_p(\text{PGL}_F(p^r))$ [12 Lemma 8.5.5]. Every central simple
E-algebra of degree p is cyclic over a finite field extension of degree prime to p; hence $ed_p(\text{PGL}_F(p)) = 2$ \cite[Lemma 8.5.7]{Rost} as we just need two parameters to define a cyclic algebra. It is shown in \cite[Cor. 3.10]{K} and \cite[Th. 8.6]{Rost} that $4 \leq ed_p(\text{PGL}_F(p^2)) \leq p^2 + 1$.

We prove the following:

Theorem 1.1. Let p be a prime integer and F a field of characteristic different from p. Then $ed_p(\text{PGL}_F(p^2)) = p^2 + 1$.

Corollary 2 (Rost). If F is a field of characteristic different from 2, then $ed(\text{PGL}_F(4)) = ed_2(\text{PGL}_F(4)) = 5$.

Proof. By Theorem 1.1 we have $ed(\text{PGL}_F(4)) \geq ed_2(\text{PGL}_F(4)) = 5$. On the other hand, $ed(\text{PGL}_F(4)) \leq 5$ by \cite{K}.

We use the following notation:

- F is a field, and $\Gamma = \text{Gal}(F_{sep}/F)$ is the absolute Galois group of F.
- $X(F)$ is the character group of Γ.
- $\text{Br}(F)$ is the Brauer group of F. For a field extension L/F, we write $\text{Br}(L/F)$ for the relative Brauer group $\text{Ker}(\text{Br}(F) \to \text{Br}(L))$.
- \mathbb{G}_m denotes the multiplicative algebraic group Spec $F[t, t^{-1}]$ over F.

For a finite separable field extension L/F, we write $R_{L/F}$ for the corestriction operation (see \cite[§20.5]{K}). In particular, $R_{L/F}(\mathbb{G}_{m,L})$ is the multiplicative group of L considered as an algebraic group (torus) over F. We write $R^{(1)}_{L/F}(\mathbb{G}_{m,L})$ for the torus of norm 1 elements in L.

If A is a central simple algebra over F, then $\text{SB}(A)$ denotes the Severi-Brauer variety of A of reduced rank 1 right ideals in A \cite[§1.C]{K}.

If p is a prime integer and B is a torsion abelian group, we write $B\{p\}$ for the p-primary component of B and p^nB for the subgroup of elements of exponent p^n in B.

In the present paper, the word “scheme” over a field F means a separated scheme of finite type over F and a “variety” over F is an integral scheme over F. If X is a scheme over F and E/F is a field extension, then $X(E) = \text{Mor}_F(\text{Spec}(E), X)$ is the set of points of X over E. We write X_E for the scheme $X \times_F \text{Spec}(E)$ over E.

2. Algebraic tori

2.1. R-equivalence of algebraic tori.

Let T be an algebraic torus over a field F. As usual, we write T^* for the character group of T over a separable closure F_{sep} of F. The group T^* is a Γ-lattice.

A torus P is *quasi-trivial* if P^* is a permutation lattice, i.e., if there is a Γ-invariant \mathbb{Z}-basis of P^*.

Let E/F be a field extension. Recall that the group of R-equivalence classes $T(E)/R$ is the factor group of $T(E)$ modulo the subgroup $RT(E)$ of all elements that are R-equivalent to 1 (see \cite[§5]{K} and \cite[Ch. 6]{Rost}). If P is a quasi-trivial torus, then $P(E)/R = 1$.

Example 2.1 (\cite[Prop. 15]{K}). Let L/F be a finite Galois field extension and $T = R^{(1)}_{L/F}(\mathbb{G}_{m,L})$ the torus of norm 1 elements in L. Then the subgroup $RT(F)$ is generated by elements of the form $\sigma(u)/u$ over all $\sigma \in \text{Gal}(L/F)$ and $u \in L^\times$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Example 2.2. The torus $T = R_{L/F}^{(1)}(\mathbb{G}_{m,L})$ is not rational if L/F is a bicyclic field extension of degree p^2 by [135 §4.8]. Moreover, T is not R-trivial generically; i.e., there is a field extension E/F such that $T(E)/R \neq 1$. In fact, the image of the generic point of T in $T(F(T))/R$ is not trivial.

2.2. Characters, cyclic algebras and tori. For a field F, the character group $X(F)$ of Γ is equal to

$$\text{Hom}_{cont}(\Gamma, \mathbb{Q}/\mathbb{Z}) = H^1(F, \mathbb{Q}/\mathbb{Z}) \simeq H^2(F, \mathbb{Z}).$$

For a character $\chi \in X(F)$, set $F(\chi) = (F_{sep})^{\text{Ker}(\chi)}$. Then $F(\chi)/F$ is a cyclic field extension of degree $\text{ord}(\chi)$. The Galois group $\text{Gal}(F(\chi)/F)$ has a canonical generator σ such that $\chi(\sigma) = \text{ord}(\chi)^{-1} + \mathbb{Z}$ for any lifting $\tilde{\sigma}$ of σ to Γ.

If $F' \subset F$ is a subfield and $\chi \in X(F')$, we write χ_F for the image of χ under the natural map $X(F') \to X(F)$ and write $F(\chi)$ for $F(\chi_F)$.

Let K/F be a cyclic field extension. Choose a character $\chi \in X(F)$ such that $K = F(\chi)$. The cup product

$$X(F) \otimes F^\times = H^2(F, \mathbb{Z}) \otimes H^0(F, F_{sep}^\times) \to H^2(F, F_{sep}^\times) = \text{Br}(F)$$

takes $\chi \otimes a$ to the class $\chi \cup (a)$ of a cyclic algebra split by K. In fact, every element of $\text{Br}(K/F)$ is of the form $\chi \otimes a$ for some $a \in F^\times$.

Let L be an étale F-algebra of dimension n and $S = R_{L/F}(\mathbb{G}_{m,L})/\mathbb{G}_m$. The exact sequence

$$1 \to \mathbb{G}_m \to R_{L/F}(\mathbb{G}_{m,L}) \to S \to 1$$

and Hilbert Theorem 90 yield an isomorphism $\theta : H^1(F, S) \xrightarrow{\sim} \text{Br}(L/F)$. Let $\alpha \in H^1(F, S)$ and let S_{α} be the corresponding principal homogeneous space of S.

As S is an open subscheme of the projective space $\mathbb{P}_F(L)$, the variety S_{α} is an open subset of the Severi-Brauer variety $SB(A_{\alpha})$ of a central simple F-algebra A_{α} of degree n such that $[A_{\alpha}] = \theta(\alpha)$ in $\text{Br}(L/F)$. Moreover, S_{α} is trivial if and only if A_{α} is split.

Let $\chi \in X(F)$ and $L = F(\chi)$. Then $S \simeq R_{L/F}^{(1)}(\mathbb{G}_{m,L})$ by Hilbert Theorem 90 and $[A_{\alpha}] = \chi \cup a$ for some $a \in F^\times$. Moreover, the principal homogeneous space S_{α} coincides with the fiber S_{α} of the norm homomorphism $R_{L/F}(\mathbb{G}_{m,L}) \to \mathbb{G}_m$ over a.

2.3. Bicyclic algebras and tori. Let χ and η be two characters in $X(F)$ of order p. Then the fields $K = F(\chi)$ and $K' = F(\eta)$ are cyclic extensions of F of degree p. Set $L = K \otimes_F K'$, so L is a bicyclic extension of F of degree p^2. The group $G = \text{Gal}(K/F) \times \text{Gal}(K'/F)$ acts naturally on L by automorphisms and G is generated by elements σ and τ such that $L^\sigma = K'$ and $L^\tau = K$.

Let I be the augmentation ideal in the group ring $\Lambda := \mathbb{Z}[G]$, i.e., $I = \text{Ker}(\varepsilon)$, where $\varepsilon : \Lambda \to \mathbb{Z}$ is defined by $\varepsilon(\rho) = 1$ for all $\rho \in G$. We have:

(1) $\text{Br}(L/F) = H^2(G, L^\times) = \text{Ext}_G^1(\mathbb{Z}, L^\times) \simeq \text{Ext}_G^1(I, L^\times)$.

Consider the exact sequences of G-modules

(2) $0 \to M \to \Lambda^2 \xrightarrow{f} I \to 0$,

where $f(x, y) = (\sigma - 1)x + (\tau - 1)y$ and $M = \text{Ker}(f)$ and

(3) $0 \to \Lambda/\mathbb{Z}N_G \xrightarrow{\partial_1} M \xrightarrow{\partial_2} \mathbb{Z}^2 \to 0$,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where \(N_G = \sum_{\rho \in G} \rho \in \Lambda \), \(g(x + \mathbb{Z}N_G) = ((\tau - 1)x, (1 - \sigma)x) \) and \(h(x, y) = (\varepsilon(x)/p, \varepsilon(y)/p) \).

Let \(T \) be the torus of norm 1 elements for the extension \(L/F \) and let \(T' \) be the torus with the character lattice \(M \). We have

\[
T(E) = \text{Hom}_G(\Lambda/\mathbb{Z}N_G, (EL)^\times), \quad T'(E) = \text{Hom}_G(M, (EL)^\times)
\]

for any field extension \(E/F \).

The exact sequences \(\textbf{[2]} \) \(\textbf{[3]} \), the isomorphisms \(\textbf{[1]} \) and \(\textbf{[4]} \) and Hilbert Theorem 90 yield a commutative diagram for any field extension \(E/F \):

\[
\begin{array}{cccccc}
\text{Hom}_G(\mathbb{Z}^2, (EL)^\times) & \xrightarrow{h^*} & T'(E) & \xrightarrow{\alpha} & \text{Br}(EL/E) & \xrightarrow{0} \\
\text{Hom}_G(\Lambda^2, (EL)^\times) & \xrightarrow{\beta} & T(E) & \xrightarrow{g^*} & & \\
\end{array}
\]

It follows that the cokernels of \(\alpha \) and \(\beta \) are naturally isomorphic. The image of \(\alpha : E^{\times 2} \to \text{Br}(EL/E) \) is the subgroup of decomposable elements \(\text{Br}_{\text{dec}}(EL/E) \) of \(\text{Br}(EL/E) \) generated by \(\chi_E \cup (a) \) and \(\eta_E \cup (b) \) with \(a, b \in E^{\times} \).

The cokernel of \(\beta : (EL)^{\times 2} \to T(E) \) is the group of \(R \)-equivalence classes \(T(E)/R \) (see Example \(\textbf{[2.1]} \)). We have proved:

Proposition 2.3. Let \(L/F \) be a bicyclic extension and \(T = R_{L/F}(\mathbb{G}_{m,L}) \). Then for any field extension \(E/F \), there is a natural isomorphism

\[
T(E)/R \simeq \text{Br}(EL/E)/\text{Br}_{\text{dec}}(EL/E).
\]

Let \(A' \) be a central simple algebra of degree \(p^2 \) over \(F(T') \) corresponding to the generic point of \(T' \). Also choose a central simple algebra \(A \) of degree \(p^2 \) over \(F(T) \) corresponding to the generic point of \(T \) by Proposition \(\textbf{[2.3]} \). The field \(F(T) \) is a subfield of \(F(T') \) and the classes \([A_{F(T')}]\) and \([A']\) are congruent in \(\text{Br}(L(T')/F(T')) \) modulo \(\text{Br}_{\text{dec}}(L(T')/F(T')) \). It follows that \(p[A_{F(T')}^*] = p[A'] \) in \(\text{Br}(F(T')) \).

The exact sequence of \(G \)-modules

\[
0 \to L^\times \oplus M \to L(T')^\times \to \text{Div}(T_L') \to 0
\]

induces an exact sequence

\[
H^1(G, \text{Div}(T_L')) \to H^2(G, L^\times) \oplus H^2(G, M) \to H^2(G, L(T')^\times).
\]

As \(\text{Div}(T_L') \) is a permutation \(G \)-module, the first term in the sequence is trivial. Therefore, we get an injective homomorphism

\[
\varphi : H^2(G, M) \to \text{Br}(F(T')/\text{Br}(F)).
\]

It follows from \(\textbf{[2]} \) that

\[
H^2(G, M) \simeq H^1(G, I) \simeq \hat{H}^0(G, \mathbb{Z}) = \mathbb{Z}/p^2\mathbb{Z};
\]

thus, \(H^2(G, M) \) has a canonical generator \(\xi \) of order \(p^2 \).
Lemma 2.4. We have $\phi(\xi) = -[A'] + Br(F)$.

Proof. Consider the following diagram:

\[
\begin{array}{cccc}
\text{Hom}_G(\mathbb{Z}, \mathbb{Z}) & \longrightarrow & \text{Ext}_G^1(\mathbb{Z}, I) \\
\text{Hom}_G(I, I) & \longrightarrow & \text{Ext}_G^1(\mathbb{Z}, I) \\
\text{Hom}_G(M, M) & \longrightarrow & \text{Ext}_G^1(I, M) & \longrightarrow & \text{Ext}_G^2(\mathbb{Z}, M) \\
& & \downarrow & & \\
\text{Hom}_G(M, L(T')^\times) & \longrightarrow & \text{Ext}_G^1(I, L(T')^\times) & \longrightarrow & \text{Ext}_G^2(\mathbb{Z}, L(T')^\times) \\
\end{array}
\]

By [2] Ch. XIV, the images of $1_\mathbb{Z}$ and -1_I agree in $\text{Ext}_G^1(\mathbb{Z}, I)$ and the images of 1_M and -1_I agree in $\text{Ext}_G^2(I, M)$. It follows from [2] Ch. V, Prop. 4.1 that the upper square is anticommutative. The image of $1_\mathbb{Z}$ is equal to $\phi(\xi)$ and the image of 1_M is equal to $[A'] + Br(F)$ in the right bottom corner. \qed

Corollary 2.5. The class $p[A]$ in $Br F(T)$ does not belong to the image of $Br(F) \to Br F(T)$.

Proof. The image of $p[A]$ in $Br F(T')$ coincides with $p[A']$. Modulo the image of the map $Br(F) \to Br F(T')$, the class $p[A']$ is equal to $-\phi(p\xi)$ and therefore, is nonzero as ϕ is injective. \qed

3. Degree of points of the norm 1 torus for a bicyclic field extension

3.1. Chow groups and push-forward homomorphism. Let X be a scheme over a field F. We write $Z(X)$ for the group of algebraic cycles on X, i.e., the free abelian group generated by points of X. We write $\text{CH}(X)$ for the factor group of $Z(X)$ by the subgroup of cycles rationally equivalent to 0 (see [3] §1.3]). The groups $Z(X)$ and $\text{CH}(X)$ are graded by the dimension of points. If $x \in X$ is a point of dimension i, $[x]$ denotes the class of x in $\text{CH}_i(X)$.

If X is a variety of dimension d, then the group $\text{CH}_d(X)$ is infinite cyclic generated by the class of the generic point of X.

Let $f : X \to Y$ be a morphism of schemes over F. The push-forward homomorphism $f_* : Z(X) \to Z(Y)$ is a graded homomorphism defined by

\[f_*(x) = \left\{ \begin{array}{ll}
[F(x) : F(y)] : y, & \text{if } [F(x) : F(y)] \text{ is finite;} \\
0, & \text{otherwise,}
\end{array} \right. \]

where $x \in X$ and $y = f(x)$. If f is a proper morphism, then f_* factors through the rational equivalence, defining the push-forward homomorphism $\text{CH}(X) \to \text{CH}(Y)$ still denoted by f_* (see [3] §1.4]).

3.2. Degree of a point. Let X be a scheme over a field F, $a \in X(E)$ a point over a field extension E/F and $\{x\}$ the image of $a : \text{Spec}(E) \to X$. The dimension of a is the integer $\dim(a) := \dim(x)$. If $f : X \to Y$ is a morphism of varieties over F and
If $a \in X(E)$ for a field extension E/F, we have $\dim(a) \geq \dim(f(a))$. If $d = \dim(a)$, we define the class $[a]$ of a in $\text{CH}_d(X)$ as follows:

$$[a] := \begin{cases} [E : F(x)] \cdot [x], & \text{if } [E : F(x)] \text{ is finite;} \\ 0, & \text{otherwise.} \end{cases}$$

In addition, if X is a variety, the degree of a is the integer $\deg(a)$ satisfying $[a] = \deg(a) \cdot [x]$ if $\dim(a) = \dim(X)$ and x is the generic point of X, and $\deg(a) = 0$ otherwise.

If E'/E is a field extension and $a \in X(E)$, we write $a_{E'}$ for the image of a in $X(E')$. If E'/E is finite, we have $\deg(a_{E'}) = [E' : E] \cdot \deg(a)$.

If $E = F(X)$ is the function field of X and $a \in X(E)$ is the generic point, then $\deg(a) = 1$.

Proposition 3.1. Let $f : X \to Y$ be a proper morphism of varieties over F and let $a \in X(E)$ be a point over a field extension E/F. Then $[f(a)] = f_*([a])$ in $\text{CH}(Y)$.

Proof. Let $\{x\}$ be the image of a in X and $y = f(x)$. If one of the field extensions $E/F(x)$ and $F(x)/F(y)$ is infinite, then $[f(a)] = 0$ and $f_*([a]) = 0$. We may assume that E is a finite extension of $F(y)$. Then

$$[f(a)] = [E : F(y)] \cdot [y]$$
$$= [E : F(x)] \cdot ([F(x) : F(y)] \cdot [y])$$
$$= [E : F(x)] \cdot f_*([x])$$
$$= f_*([a]).$$

If Z is a scheme over F, we write $n(Z)$ for the gcd $[F(z) : F]$ over all closed points $z \in Z$.

Example 3.2. Let T be an algebraic torus over F. We write $i(T)$ for the greatest common divisor of the integers $[E : F]$ over all finite field extensions E/F such that T is isotropic over E. If X is a smooth complete geometrically irreducible variety containing T as an open set, then $n(X \setminus T) = i(T)$ by [3 Lemme 12] (see also [10 Lemma 5.1]).

We shall need a variant of a push-forward homomorphism for morphisms that are not proper.

Proposition 3.3. Let X be a complete variety over F, $U \subset X$ an open subvariety, $Z = X \setminus U$ and $f : U \to Y$ a morphism over F, where Y is a variety of dimension d over F. If $n = n(Z_{F(Y)})$, then the push-forward homomorphism on cycles $f_* : \text{Z}(U) \to \text{Z}(Y)$, followed by the projection $\text{Z}(Y) \to \text{Z}_d(Y) = \mathbb{Z}$, gives rise to a well-defined homomorphism

$$f_* : \text{CH}(U) \to \mathbb{Z}/n\mathbb{Z}.$$

Moreover, for any point $a \in U(E)$ over a field extension E/F, one has $f_*([a]) = \deg(f(a)) \bmod n$.

Proof. We define the map f_* to be trivial on all homogeneous components $\text{CH}_i(U)$ except $i = d$, so we just need to define f_* on $\text{CH}_d(U)$.

We claim that the image of the push-forward homomorphism

$$s_* : \text{CH}_d(Z \times Y) \to \text{CH}_d(Y) = \mathbb{Z}$$
for the projection $s : Z \times Y \to Y$ is contained in $n\mathbb{Z}$. Let $u \in Z \times Y$ be a point of dimension d. If $s(u)$ is not the generic point of Y, then $s_*(|u|) = 0$. Otherwise, u is a closed point in $Z_\pi(Y) \subset Z \times Y$ and $s_*(|u|)$ coincides with the degree of this closed point and hence is divisible by n. The claim is proven.

The map s_* factors as $s_* = q_* \circ i_*$, where $i : Z \times Y \to X \times Y$ is the closed embedding and $q : X \times Y \to Y$ is the projection. By localization [4, §1.8], $\text{CH}_d(U \times Y)$ is canonically isomorphic to the cokernel of i_*. By the claim, q_* gives rise to a homomorphism $\text{CH}_d(U \times Y) \to \mathbb{Z}/n\mathbb{Z}$. Composing it with the pushforward homomorphism for the closed embedding $(1_U, f) : U \to U \times Y$, we get the required homomorphism $f_* : \text{CH}_d(U) \to \mathbb{Z}/n\mathbb{Z}$. The last equality in the statement follows from Proposition 3.4.1 applied to q.

Example 3.4. Let T be an algebraic torus over F and $n = i(T)$ (see Example 3.2). Then the structure morphism $T \to \text{Spec}(F)$ gives rise to a homomorphism $\text{CH}_d(T) \to \mathbb{Z}/n\mathbb{Z}$ that takes the class of a closed point $t \in T$ to $[F(t) : F]$ modulo n.

3.3. Chow groups of tori and Severi-Brauer varieties

Let p be a prime integer and let Z be the product of r copies of the projective space $\mathbb{P}_F(W)$, where W is a vector space of dimension $n > 0$ over F. Then

$$\text{CH}(Z) = \mathbb{Z}[\mathbf{h}] := \mathbb{Z}[h_1, h_2, \ldots, h_r],$$

with $h_i^n = 0$ for all i, where h_i is the pull-back on Z of the class of a hyperplane on the ith factor of Z. Moreover, $\mathbb{Z}[\mathbf{h}]$ is the factor ring of the polynomial ring on the variables t_1, t_2, \ldots, t_r by the ideal generated by $t_1^n, t_2^n, \ldots, t_r^n$. Note that the homogeneous ith component $\mathbb{Z}[\mathbf{h}]_i$ is trivial if $i > r(n-1)$ and $\mathbb{Z}[\mathbf{h}]_{r(n-1)} = \mathbb{Z}h^{n-1}$, where $\mathbf{h} := h_1h_2\cdots h_r$.

Let K/F be a Galois field extension with a cyclic Galois group H of prime order p and let σ be a generator of H. Let V be a vector space of dimension $n > 0$ over K. Consider the variety $X = R_{K/F}(\mathbb{P}_K(V))$ over F. Then X_K is the product of p copies of $\mathbb{P}_K(V)$. The group H acts on the product by cyclic permutation of the factors. We have the graded ring homomorphism

$$\text{CH}(X) \to \text{CH}(X_K) = \mathbb{Z}[\mathbf{h}],$$

where $\mathbf{h} = (h_1, h_2, \ldots, h_p)$.

The group H acts on $\mathbb{Z}[\mathbf{h}]$ permuting cyclically the h_i’s. Hence the image of the map $\text{CH}(X) \to \mathbb{Z}[\mathbf{h}]$ is contained in the subring $\mathbb{Z}[\mathbf{h}]^H$ of H-invariant elements, so we have the graded ring homomorphism

$$\text{CH}(X) \to \mathbb{Z}[\mathbf{h}]^H$$

(which is in fact an isomorphism). The image of an element $\alpha \in \text{CH}(X)$ in $\mathbb{Z}[\mathbf{h}]^H$ is denoted by $\bar{\alpha}$. For example, if α is the class of the subscheme $R_{K/F}(\mathbb{P}_K(W))$ of X, where W is a K-subspace of V of codimension $i = 0, 1, \ldots, n-1$, then $\bar{\alpha} = h^i$.

Consider the trace homomorphism

$$\text{tr} : \mathbb{Z}[\mathbf{h}] \to \mathbb{Z}[\mathbf{h}]^H$$

defined by $\text{tr}(x) = \sum_{i=0}^{p-1} \sigma^i(x)$. We write I for the image of tr. Clearly, I is a graded ideal in $\mathbb{Z}[\mathbf{h}]^H$. Note that

$$\text{(5)} \quad \mathbb{Z}[\mathbf{h}]^H = \left\{ \begin{array}{ll} I_j, & \text{if } p \text{ does not divide } j; \\ \mathbb{Z}h^i + I_j, & \text{if } j = pi. \end{array} \right.$$
It follows that $\mathbb{Z}[h]^H$ is generated by I and h^i, $i = 0, 1, \ldots, n - 1$ as an abelian group. Moreover, $ph^i \in I$ for all j and $I_{p(n-1)} = p\mathbb{Z}h^{n-1}$.

Let A be a central simple algebra over K of degree n and let $Y = R_{K/F}(\text{SB}(A))$, where $\text{SB}(A)$ is the Severi-Brauer variety of A over K. The function field E of Y splits A and is linearly disjoint with K/F. Therefore, $Y_E \simeq X_E$ and we have the ring homomorphism

$$\text{CH}(Y) \to \text{CH}(Y_E) \simeq \text{CH}(X_E) \to \mathbb{Z}[h]^H.$$

The image of an element $\alpha \in \text{CH}(Y)$ in $\mathbb{Z}[h]^H$ is denoted by $\bar{\alpha}$.

Proposition 3.5. Let K/F be a cyclic field extension of prime degree p, let A be a nonsplit central simple K-algebra of degree p and $Y = R_{K/F}(\text{SB}(A))$. Then the image of the map $\text{CH}(Y) \to \mathbb{Z}[h]^H$ is contained in $\mathbb{Z} + I$.

Proof. Consider a more general situation: A is a central simple K-algebra of index p and degree n. Let $\alpha \in \text{CH}(Y)$. We shall prove in the cases 1 and 2 below that $\bar{\alpha} \in \mathbb{Z} + I$. By (5), we may assume that $\alpha \in \text{CH}^{pi}(Y)$ for $i = 1, 2, \ldots, n - 1$. Let $a \in \mathbb{Z}$ be such that $\bar{\alpha} \equiv ah^i$ modulo I. It suffices to prove that a is divisible by p.

Case 1. $i = n - 1$. We have $\bar{\alpha} = bh^{n-1}$ for some $b \equiv a$ modulo p as $I_{p(n-1)} = p\mathbb{Z}h^{n-1}$. Since h^{n-1} is the class of a rational point of Y over a splitting field and the degree of every closed point of Y is divisible by p, we have $b \in p\mathbb{Z}$. Therefore, $a \in p\mathbb{Z}$.

Case 2. i divides $n - 1$. Write $n - 1 = ij$. We have $\alpha^j \in \text{CH}^{pi(n-1)}(Y)$ and $\alpha^j \equiv a^jh^{n-1}$ modulo I. By Case 1, a^j and hence a is divisible by p.

Now assume that A is a central division K-algebra of degree p and $\alpha \in \text{CH}^{pi}(Y)$ with $i = 1, 2, \ldots, p - 1$. We shall prove that $\bar{\alpha} \in I$. Write $ik + pm = 1$ for some integers k and $m > 0$. The Severi-Brauer variety $\text{SB}(M_m(A))$ can be identified with the variety of the reduced rank 1 right A-submodules in the free right A-module A^n. The projection to the last component A of A^n gives rise to a rational morphism $\text{SB}(M_m(A)) \to \text{SB}(A)$ that is defined on the complement U of the variety $\text{SB}(M_{m-1}(A))$ embedded into $\text{SB}(M_m(A))$ as a closed subvariety via the inclusion $A^{m-1} \to A^m$, $(a_1, \ldots, a_{m-1}) \mapsto (a_1, \ldots, a_{m-1}, 0)$. Moreover, the projection $U \to \text{SB}(A)$ is a vector bundle.

Let $Y' = R_{K/F}(\text{SB}(M_m(A)))$ and $U' = R_{K/F}(U)$. Then U' is an open subscheme of Y' and the natural morphism $U' \to Y$ is a vector bundle. Hence we have a surjective homomorphism

$$\text{CH}(Y') \to \text{CH}(U') \simeq \text{CH}(Y).$$

Moreover, the diagram

$$\begin{array}{ccc}
\text{CH}(Y') & \longrightarrow & \text{CH}(Y) \\
\downarrow & & \downarrow \\
\mathbb{Z}[h]^H & \longrightarrow & \mathbb{Z}[h]^H,
\end{array}$$

where the bottom map takes a monomial h^α to h^α if $\alpha_i < p$ for all i and to 0 otherwise, is commutative. Lift α to an element $\alpha' \in \text{CH}^{pi}(Y')$. As i divides $pm - 1$, by Case 2 applied to the algebra $M_m(A)$, we have $\bar{\alpha}' \in I'$. Since the bottom map in the diagram takes I' to I, we have $\bar{\alpha} \in I$. \qed
Let K'/F be a cyclic field extension of degree p and
\[S = \left(R^{(1)}_{K'/F}(\mathbb{G}_{m,K'}) \right)^r \simeq \left(R_{K'/F}(\mathbb{G}_{m,K'})/\mathbb{G}_m \right)^r \]
for some $r > 0$. We view the variety of the group S as an open subset of $Z := \mathbb{P}_F(K')^r$. Hence the restriction gives a surjective ring homomorphism
\[(\mathbb{Z}/p\mathbb{Z})[h] = \text{Ch}(Z) \to \text{Ch}(S), \]
where $h = (h_1, h_2, \ldots, h_r)$, $h_i^p = 0$ for all i, and we write Ch for the Chow groups modulo p. We shall also write h_i for the image of h_i in $\text{Ch}^1(S)$. The class in $\text{Ch}^{(p-1)}(S)$ of a rational point of S is equal to h^{p-1}, where $h = h_1 h_2 \cdots h_r \in \text{Ch}^p(S)$. As $i(S) = p$, we have $h^{p-1} \neq 0$ by Example 3.2.

Proposition 3.6. The map $(\mathbb{Z}/p\mathbb{Z})[h] \to \text{Ch}(S)$ is a ring isomorphism.

Proof. Suppose that $f(h_1, h_2, \ldots, h_r) = 0$ for a nonzero homogeneous polynomial f over $\mathbb{Z}/p\mathbb{Z}$. Suppose that a monomial $h_1^{\alpha_1} \cdots h_r^{\alpha_r}$ enters f with a nonzero coefficient. Multiplying the equality by $h_1^{\beta_1} \cdots h_r^{\beta_r}$ with $\beta_i = p - 1 - \alpha_i$, we get $h^{p-1} = 0$, a contradiction. \(\square\)

For an element α in $\text{Ch}(S)$ we shall write $\bar{\alpha}$ for the corresponding element in $(\mathbb{Z}/p\mathbb{Z})[h]$.

Consider the homomorphism $f : S \times S \to S$ defined by $f(x, y) = xy^{-1}$. Recall that as $i(S) = p$, by Example 2.2 and Proposition 3.3, we have the homomorphism
\[f_* : \text{Ch}^{(p-1)}(S \times S) \to \mathbb{Z}/p\mathbb{Z}. \]

Lemma 3.7. For any $\alpha \in \text{Ch}^i(S)$ and $\beta \in \text{Ch}^j(S)$ with $i + j = (p-1)$, we have
\[\bar{\alpha} \cdot \bar{\beta} = f_*(\alpha \times \beta) h^{p-1} \]
in $(\mathbb{Z}/p\mathbb{Z})[h]$.

Proof. It suffices to consider the case when α and β are monomials in h_i. As both sides of the equality commute with products, we may assume that $r = 1$, i.e., $S = R_{K'/F}(\mathbb{G}_{m,K'})/\mathbb{G}_m$, and $\alpha = h^i$, $\beta = h^j$. The cycles α and β are represented by $\mathbb{P}(U) \cap S$ and $\mathbb{P}(W) \cap S$, where U and W are F-subspaces of K' of codimensions i and j, respectively. The fiber of the restriction
\[f' : (\mathbb{P}(U) \cap S) \times (\mathbb{P}(W) \cap S) \to S \]
of f over a point s of S is isomorphic to $\mathbb{P}(U \cap sW) \cap S$. The vector space $U \cap sW$ is one-dimensional for a generic s; hence f' is a birational isomorphism and $f_*(\alpha \times \beta) = 1 + p\mathbb{Z}$. On the other hand, $\bar{\alpha} \cdot \bar{\beta} = h^i \cdot h^j = h^{p-1}$. \(\square\)

Let L/F be a bicyclic field extension of degree p^2 and $T = R^{(1)}_{L/F}(\mathbb{G}_{m,L})$. Choose a subfield K of L of degree p over F and let $t \in K^\times$ be an element with $N_{K/F}(t) = 1$; i.e., t is an F-point of the torus $R^{(1)}_{K/F}(\mathbb{G}_{m,K})$. Write S_t for the fiber of the norm homomorphism $T \to R^{(1)}_{K/F}(\mathbb{G}_{m})$ over t. The variety S_t is a principal homogeneous space of the torus $S = R_{K/F}(\mathbb{G}_{m,K}) \simeq R_{K/F}(R_{L/K}(\mathbb{G}_{m,L}))/\mathbb{G}_m(K)$. The variety S_t is canonically isomorphic to an open subscheme of the variety $Y := R_{K/F}(\text{SB}(A_t))$ for a central simple K-algebra A_t of degree p (see Section 2.2). Over the function field E of $\text{SB}(A_t)$ over K, the varieties S_t and S become isomorphic to the torus $\left(R^{(1)}_{LE/E}(\mathbb{G}_{m,LE}) \right)^p$, where $LE = L \otimes_K E$, so we can apply...
the constructions considered above to the torus S_E over E. In particular, we have that the element $\bar{\alpha} \in \mathbb{Z} \cdot \mathbb{L}([\mathbb{H}])$ is well defined for any cycle α on S_t and S.

Consider the morphism

$$f : S_t \times S \to S_t, \quad f(x, y) = xy^{-1}.$$

We have defined the homomorphism (see (9)):

$$f_* : \text{CH}_{p(p-1)}(S_t \times S) \to \text{CH}_{p(p-1)}((S_t)E \times S_E) \to \mathbb{Z} \cdot \mathbb{L}.$$

Proposition 3.8. Suppose that the principal homogeneous space S_t is not trivial. Then $f_*(\alpha \times \bar{h}^d) = 0$ for any $\alpha \in \text{CH}^{p(p-j-1)}(S_t)$ and $j = 0, 1, \ldots, p - 2$.

Proof. As S_t is not trivial, the algebra A_t is not split. We can lift α to a cycle β in $\text{CH}(Y)$. By Proposition 3.3 β belongs to the image I of the ideal I in $(\mathbb{Z} \cdot \mathbb{L})[h]^H$. It follows that $\bar{\alpha} \cdot \bar{h}^d = \beta \cdot \bar{h}^d \in I_{p(p-1)} = 0$. Lemma 3.7 (applied to the field extension E of F and $r = p$) shows that $f_*(\alpha \times \bar{h}^d) = 0$. \qed

3.4. A key proposition

Let p be a prime integer, L/F a bicyclic field extension of degree p^2, $G = \text{Gal}(L/F)$, σ and τ generators of G. Consider the tori $T = R_{1,F}^N(G_{m,L})$ of norm 1 elements in L/F and $P = R_{1,F}^N(G_{m,L})/G_m$, both of dimension $d := p^2 - 1$. The torus T (respectively, P) becomes isotropic over a field extension E/F if and only if $E \otimes_F L$ is not a field. It follows that $i(T) = i(P) = i(T \times P) = p$.

Consider the morphisms f and g from $T \times P$ to T defined by $f(t, v) = t$ and $g(t, v) = \tau(\sigma(v)/v)$. By Proposition 3.3 and Example 3.2, f and g give rise to well-defined homomorphisms f_* and g_* from $\text{CH}(T \times P)$ to $\mathbb{Z} \cdot \mathbb{L}$.

Proposition 3.9. The maps f_* and g_* coincide.

Proof. The torus P is an open subscheme in the projective space $\mathbb{P}_F(L)$; hence the ring $\text{CH}(P)$ is generated by the restriction to P of the class e of a hyperplane in $\mathbb{P}_F(L)$. Moreover, by the Projective Bundle Theorem [4, Th. 3.3], $\text{CH}_d(T \times P)$ coincides with the sum of subgroups $\text{CH}_d(T) \times e^i$ over all $i = 0, 1, \ldots, d$.

Let $\beta \in \text{CH}_d(T)$. It suffices to show that $f_*(\beta \times e^i) = g_*(\beta \times e^i)$ for any $i = 0, 1, \ldots, d$. If $i = d$, the class e^i is represented by the identity point 1 of P. The equality follows from the fact that f and g coincide on $T \times \{1\}$.

Now assume that $i < d$. In this case, $f_*(\beta \times e^i) = 0$ and we need to show that $g_*(\beta \times e^i) = 0$.

Let K be the subfield of σ-invariant elements in L of degree p over F. We have $pk + 1 \leq p^2 - i \leq p(k + 1)$ for some integer $k = 0, \ldots, p - 1$. Consider a K-linear subspace W of L of K-dimension k such that $K \cap W = 0$. Let V be an F-subspace of L of dimension $p^2 - i$ over F such that

$$F \oplus W \subset V \subset K \oplus W.$$

The class of $P \cap \mathbb{P}(V)$ in $\text{CH}^i(P)$ is equal to e^i.

The torus $S := R_{K/L}^N(R_{1,K}^N(G_{m,L}))$ is the kernel of the norm homomorphism $T \to T_1 := R_{K/L}^N(G_{m,K})$, so we have an exact sequence

$$1 \to S \to T \to T_1 \to 1.$$
By Hilbert Theorem 90, \(S \simeq R_{K/F}(R_{L/K}(\mathbb{G}_{m,L})/\mathbb{G}_{m,K}) \). We view \(S \) as an open subscheme of \(R_{K/F}(\mathbb{P}_K(L)) \). The map \(g \) factors as follows:

\[
T \times P \xrightarrow{1_{T} \times l} T \times S \xrightarrow{\gamma} T,
\]

where \(l : P \to S \) is defined by \(l(v) = v/\sigma(v) \) and \(r(t, s) = ts^{-1} \). The image of \(P \cap \mathbb{P}_F(K \oplus W) \) under \(l \) is the variety \(S \cap R_{K/F}(\mathbb{P}_K(K \oplus W)) \) of dimension \(pk \) in \(S \simeq R_{K/F}(R_{L/K}(\mathbb{G}_{m,L})/\mathbb{G}_{m,K}) \). Therefore, if \(p^2 - i > pk + 1 \), then \(\dim(P \cap \mathbb{P}(V)) > pk \), but the dimension of the image of \(P \cap \mathbb{P}(V) \) under \(l \) is at most \(pk \), so \(P \cap \mathbb{P}(V) \) loses dimension under \(l \); therefore, \(g_* (\beta \times e^i) = 0 \).

It remains to consider the case \(p^2 - i = pk + 1 \), \(k = 1, \ldots , p - 1 \), i.e., \(V = F \oplus W \). Since the map \(P \cap \mathbb{P}(V) \to R_{K/F}(\mathbb{P}_K(K \oplus W)) \) given by \(l \) is a birational isomorphism, and the class of \(R_{K/F}(\mathbb{P}_K(K \oplus W)) \) in \(\text{CH}(S) \) is equal to \(h^{p-k-1} \), where \(h \in \text{CH}^0(S) \) is the class given by a \(K \)-hyperplane in \(L \), it suffices to show that \(r_* (\beta \times h^{p-k-1}) = 0 \).

Let \(S_t \) be the fiber of the norm homomorphism \(T \to T_1 \) over the generic point \(t \) of \(T_1 \), so \(S_t \) is a principal homogeneous space of \(S \) over the function field \(F(T_1) \). Denote by

\[
r' : S_t \times S \to S_t
\]

the morphism given by \(r'(x, s) = xs^{-1} \). Thus we have a commutative diagram

\[
\begin{array}{ccc}
S_t \times S & \xrightarrow{r'} & S_t \\
\downarrow q & & \downarrow m \\
T \times S & \xrightarrow{r} & T,
\end{array}
\]

where \(m \) is the canonical morphism and \(q = m \times 1_S \). It follows that \(r_* \) factors as the composition

\[
\text{CH}_d(T \times S) \xrightarrow{q} \text{CH}_{p-1}(S_t \times S) \xrightarrow{r'} \mathbb{Z}/p\mathbb{Z}.
\]

Thus, it suffices to show that \(r' (\alpha \times h^{p-k-1}) = 0 \) for any \(\alpha \in \text{CH}^k(S_t) \). This follows from Proposition 3.8 applied to the torus \(S \) over the field \(F(T_1) \) (with \(j = p - k - 1 \)) if we show that \(S_t \) is a nontrivial principal homogeneous space of \(S \). Suppose that \(S_t \) has a point over \(F(T_1) \). It follows that the exact sequence \((1)\) splits rationally; i.e., the torus \(T \) is birationally isomorphic to the product \(S \times T_1 \) and hence is a rational variety. But \(T \) is not rational (see Example 2.2), a contradiction. \(\square \)

3.5. Invariance of the degree under \(R \)-equivalence.

Theorem 3.10. Let \(p \) be a prime integer, \(L/F \) a bicyclic field extension of degree \(p^2 \) and \(T = R_{L/F}(\mathbb{G}_{m,L}) \). Let \(M/F \) be a field extension and let \(t \) and \(t' \) be \(R \)-equivalent points in \(T(M) \). Then \(\deg(t) \equiv \deg(t') \) modulo \(p \).

Proof. We have \(t' = t \cdot \sigma(u)u^{-1} \cdot v^{-1} \cdot v^{-1} \) for some \(u, v \in (LM)^{\times} \) (see Example 2.1). Let \(t'' = t \cdot \sigma(u)u^{-1} \). It suffices to prove that \(\deg(t) = \deg(t'') \) and \(\deg(t') = \deg(t'') \) in \(\mathbb{Z}/p\mathbb{Z} \). We shall prove the first equality (the second being similar). So replacing \(t'' \) by \(t' \) we may assume that \(t' = t \cdot \sigma(u)u^{-1} \).

Consider the point \(w = (t, u) \in (T \times P)(M) \) and two morphisms \(f \) and \(g \) from \(T \times P \) to \(T \) as in Section 3.3. We have \(f(w) = t \) and \(g(w) = t' \). By Propositions 3.3 and 3.4 we have in \(\mathbb{Z}/p\mathbb{Z} \):

\[
\deg(t) = \deg f(w) = f_*([w]) = g_*([w]) = \deg g(w) = \deg(t'). \quad \square
\]
4. Essential p-dimension of \(\text{PGL}(p^2) \)

Let \(F \) be a field and \(p \) a prime integer different from \(\text{char}(F) \).

4.1. Characters, central simple algebras and discrete valuations. Let \(\nu \) be a discrete valuation on a field extension \(E \) over \(F \), \(N \) the residue field, and \(\widehat{E} \) the completion of \(E \). Then \(N \) is a field extension of \(F \).

Let \(C \) be a finite Galois module over \(F \) of order a power of \(p \). There is an exact sequence of Galois cohomology groups \([5, \S 7.9]\):

\[
0 \to H^i(N, C) \xrightarrow{i} H^i(\widehat{E}, C) \xrightarrow{\partial} H^{i-1}(N, C(-1)) \to 0.
\]

Taking \(i = 1 \) and \(C = \mathbb{Z}/p^n\mathbb{Z} \) for some \(n \), we get an exact sequence

\[
0 \to p^nX(N) \xrightarrow{i} p^nX(\widehat{E}) \xrightarrow{\partial} \text{Hom}_F(\mu_{p^n}, \mathbb{Z}/p^n\mathbb{Z}) \to 0,
\]

where \(\mu_{p^n} \) is the \(\Gamma \)-module of \(p^n \)-th roots of unity.

Let \(\chi \in X(F) \). Recall that \(F(\chi)/F \) is a cyclic field extension of degree \(\text{ord}(\chi) \) with the choice of a generator of \(\text{Gal}(F(\chi)/F) \). The group \(X(N) \) is identified with the character group of the maximal unramified field extension of \(\widehat{E} \). For a character \(\chi \in p^nX(N) \), we write \(\widehat{\chi} \) for the corresponding character in \(p^nX(\widehat{E}) \).

Taking \(i = 2 \) and \(C = \mu_{p^n} \) for all \(n \), we get an exact sequence

\[
0 \to \text{Br}(N)\{p\} \xrightarrow{i} \text{Br}(\widehat{E})\{p\} \xrightarrow{\partial} X(N)\{p\} \to 0.
\]

The first map preserves indices of algebras. For a central simple algebra \(C \) over \(N \) with \(C \in \text{Br}(N)\{p\} \) let \(\widehat{C} \) be a central simple algebra over \(\widehat{E} \) of the same degree representing the image of \([C] \) under \(i \). For example, if \([C] = \chi \cup (\bar{u}) \) for some \(\chi \in X(N)\{p\} \) and a unit \(u \in \widehat{E} \), then \([\widehat{C}] = \widehat{\chi} \cup (\bar{u}) \).

The choice of a prime element \(\pi \) in \(\widehat{E} \) yields a splitting of the sequence \([3]\) by sending a character \(\chi \) to the class of the cyclic algebra \(\widehat{\chi} \cup (\pi) \). Thus for every central simple algebra \(A \) over \(\widehat{E} \) we can write

\[
[A] = [\widehat{C}] + (\widehat{\chi} \cup (\pi))
\]
in \(\text{Br}(\widehat{E}) \) for a unique \([\widehat{C}] \in \text{Br}(N)\{p\} \) and \(\chi = \partial([A]) \). Moreover (see \([6, \text{Th. 5.15(a)}]\) or \([13, \text{Prop. 2.4}]\)),

\[
\text{ind}(A) = \text{ord}(\chi) \cdot \text{ind}(C_{N(\chi)}).
\]

Let \(E'/E \) be a finite field extension and \(\nu' \) a discrete valuation on \(E' \) extending \(\nu \) with residue field \(N' \). Then for any \([A] \in \text{Br}(E)\{p\} \) one has

\[
\partial_{\nu'}([A_{E'}]) = e \cdot \partial_{\nu}([A])_{N'},
\]

where \(e \) is the ramification index of \(E'/E \) \([5, \text{Prop. 8.2}]\).

4.2. The functors \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \). We define the functors \(\mathcal{F}_1 \) and \(\mathcal{F}_2 \) from the category \(\text{Fields}/F \) of field extensions of \(F \) to the category \(\text{Sets} \) as follows. Let \(E/F \) be a field extension. Then \(\mathcal{F}_1(E) \) is the set of isomorphism classes of central simple \(E \)-algebras of degree \(p^2 \). Thus, \(\text{ed}_p(\mathcal{F}_1) = \text{ed}_p(\text{PGL}_F(p^2)) \).

Let \(\mathcal{S}_2(E) \) be the class of pairs \((B, K)\), where \(B \) is a central simple algebra of degree \(p^2 \) over \(E \) and \(K \) is a cyclic étale \(E \)-algebra of degree \(p \) such that \(\text{ind}(B_K) \leq p \); i.e., \(K \) is isomorphic to an \(E \)-subalgebra of \(B \). We say that the pairs \((B_1, K_1)\) and \((B_2, K_2)\) are equivalent if \(K_1 \simeq K_2 \) over \(E \) and \([B_1] - [B_2] \in \text{Br}(K_1/E) = \)
Br(K_1/E). Let $\mathcal{F}_2(E)$ be the set of equivalence classes in $\mathcal{S}_2(E)$. We write $[B,K]$ for the class in $\mathcal{F}_2(E)$ of a pair (B,K).

Let $(B,K) \in \mathcal{S}_2(E)$ with K a field and let $\chi \in X(E)$ be a character (of order p) such that $K = E(\chi)$ (see Section 2.2). As $\text{ind}(B_K) \leq p$, there is a central simple algebra C over the function field $E(y)$ (y is a variable) of degree p^2 such that

$$\text{ord}(\chi_C) = \text{ord}(\chi_B) = \text{ord}(\chi_{E(y)}) + \text{ord}(\chi_K).$$

Consider the following condition (\ast) on the pair (B, K) in $\mathcal{S}_2(E)$ and the character χ:

For any finite field extension N/E of degree prime to p, the class of the algebra B_N in $\text{Br}(N)$ cannot be written in the form $[B_N] = \rho \cup (s)$ for some $s \in N^\times$ and a character $\rho \in X(N)$ of order p^2 such that $p \cdot \rho$ is a multiple of χ_N.

Proposition 4.1. Let $\chi \in X(E)$ be a character of prime order p, $K = E(\chi)$, and let B be a central simple algebra of degree p^2 over E such that (B, K) together with χ satisfy the condition (\ast). Then

$$\text{ed}_p^2([C]) \geq \text{ed}_p^2([B,K]) + 1$$

for the algebra C defined by (13).

Proof. Let $M/E(y)$ be a finite field extension of degree prime to p, $M_0 \subset M$ a subfield over F and $[C_0] \in \mathcal{F}_1(M_0)$ such that

$$[(C_0)_M] = [C_M]$$

in $\mathcal{F}_1(M)$ and $\text{ed}_p^2([C]) = \text{tr.deg}_F(\mathcal{M})$.

We have $[C] \in \mathcal{F}_1(E(y))$ and $\partial([C]) = \chi$, where ∂ is taken with respect to the discrete valuation ν on $E(y)$ associated to y (see Section 4.1). We extend ν to a discrete valuation ν' on M with ramification index e' and inertia degree both prime to p (see [7, Lemma 1.1]). Thus, the residue field N of ν' is a finite extension of E of degree prime to p. Let ν_0 be the restriction of ν' to M_0 and N_0 its residue field. As $[N : E]$ is not divisible by p, it follows from (12) that $\partial([C_M]) = e' \cdot \chi_N \neq 0$. Hence the algebra C_M is ramified; i.e., the class of C_M does not belong to the image of the map $\text{Br}(O) \rightarrow \text{Br}(M)$, where O is the valuation ring of ν'. It follows that C_0 is also ramified; therefore ν_0 is nontrivial and hence ν_0 is a discrete valuation on M_0.

Let $\chi_0 = \partial([C_0]) \in X(N_0)[p]$ and $K_0 = N_0(\chi_0)$. Choose a prime element π_0 in M_0 and write

$$[(C_0)_{\widehat{M}_0}] = [\widehat{B}_0] + (\widehat{\chi}_0 \cup (\pi_0))$$

in $\text{Br}(\widehat{M}_0)$, where B_0 is a central simple algebra over N_0 (see Section 4.1). By (11),

$$\text{ind}(C_0) = \text{ord}(\chi_0) \cdot \text{ind}(B_0)_{K_0}.$$

Let e be the ramification index of M/M_0 and let π be a prime element in M. Write $\pi_0 = u \pi^{e_0}$ and $y = v \pi^{e'}$ with u and v units in M.

It follows from (14) and (12) that

$$e' \cdot \chi_N = \partial([C_M]) = \partial([(C_0)_M]) = e \cdot \partial([C_0])_N = e \cdot (\chi_0)_N.$$

Recall that e' is relatively prime to p. It follows that χ_N is a multiple of $(\chi_0)_N$. In particular, $\text{ord}(\chi_0)_N$ is divisible by p.

It follows from (14), (15) and (17) that

\[(18) \quad [(B_0)_N] + [(\bar{\chi}_0)_N \cup (u)] = [\hat{B}_N] + (\bar{\chi}_N \cup (\bar{v}))\]

in \(\text{Br}(\hat{M})\); hence

\[(19) \quad [(B_0)_N] + [(\chi_0)_N \cup (\bar{u})] = [B_N] + (\chi_N \cup (\bar{v}))\]

in \(\text{Br}(N)\).

Since \(\text{ind}(C_0) \leq p^2\), it follows from (11) and (16) that \(\text{ord}(\chi_0)\) divides \(p^2\).

Case 1. \(\text{ord}(\chi_0)_N = p^2\). By (16), \(\text{ind}(B_0)_{K_0} = 1\), i.e., \(B_0\) is split over \(K_0\); hence \([B_0] = \chi_0 \cup (s_0)\) for some \(s_0 \in N_0^\times\). It follows from (19) that \([B_N] = (\chi_0)_N \cup (s)\) for some \(s \in N^\times\). Since \(\text{ord}(\chi_0)_N = p^2\), the character \(p \cdot (\chi_0)_N\) is a multiple of \(\chi_N\) by (17). Hence \((B, K)\) and \(\chi\) do not satisfy the condition (*), a contradiction.

Case 2. \(\text{ord}(\chi_0)_N = p\). As \(p\eta_0\) is split by \(N\), we can view the field \(N_1 := N_0(p\eta_0)\) as a subfield of \(N\). Replacing \(N_0\) by \(N_1\) and \(B_0\) by \((B_0)_N\), we may assume that \(\eta_0\) is of order \(p\) in \(X(N_0)\). The characters \(\chi_N\) and \((\chi_0)_N\) generate the same subgroup in \(X(N)\). It follows that

\[(20) \quad K_0 \otimes_{N_0} N \simeq N((\chi_0)_N) = N(\chi_N) \simeq K \otimes_{E} N.\]

By (19), we have \(\text{ind}(B_0)_{K_0} \leq p\). Therefore, we may assume that \(\text{deg}(B_0) = p^2\) and hence \((B_0, K_0) \in S_2(N_0)\). It follows from (19) that

\([B_N] - [(B_0)_N] \in \text{Br}(K \otimes_{E} N/N).\]

By [20], the pairs \((B_N, K \otimes_{E} N)\) and \(((B_0)_N, K_0 \otimes_{N_0} N) = (B_0, K_0)_N\) are equivalent in \(S_2(N)\). It follows that the class \([B, K]\) in \(F_2(E)\) is \(p\)-defined over \(N_0\); therefore,

\[\text{ed}_p^{\mathcal{F}_2}(\{C\}) = \text{tr. deg}_p(M_0) \geq \text{tr. deg}_p(N_0) + 1 \geq \text{ed}_p^{\mathcal{F}_2}(\{B, K\}) + 1.\]

\[\square\]

Remark 4.2. The statement of Proposition 4.1 is no longer true if we don’t assume the condition (*). Indeed, let \([B_N] = \rho \cup (s)\) for a finite field extension \(N/E\) of degree prime to \(p\), some \(s \in N^\times\) and a character \(\rho \in X(N)\) of order \(p\) such that \(p \cdot \rho\) is a multiple of \(\chi_N\). Then \([C_{N(y)}] = \rho_{N(y)} \cup (sy^{p^2})\) for some \(y\); i.e., the algebra \(C_{N(y)}\) is also cyclic. With an appropriate choice of \(\rho\) and \(s\) (and the assumption that the base field contains a primitive root of unity of degree \(p^2\)) both classes \([B, K]\) and \([C]\) have essential \(p\)-dimension 2.

4.3. The functor \(F_3\). Let \(E/F\) be a field extension and let \(S_3(E)\) be the class of pairs \((A, L)\), where \(A\) is a central simple algebra of degree \(p^2\) over \(E\) and \(L\) is a bicyclic étale \(E\)-algebra of dimension \(p^2\) such that \(L\) splits \(A\); i.e., \(L\) is isomorphic to an \(A\)-subalgebra of \(L\), or, equivalently, \([A] \in \text{Br}(L/E)\). We say that the pairs \((A_1, L_1)\) and \((A_2, L_2)\) in \(S_3(E)\) are equivalent if \(L_1 \simeq L_2\) and \([A_1] - [A_2] \in \text{Br}_{dec}(L_1/E) = \text{Br}_{dec}(L_2/E)\) (see Section 2.3). Let \(F_3(E)\) be the set of equivalence classes in \(S_3(E)\). We write \([A, L]\) for the equivalence class of \((A, L)\) in \(F_3(E)\).

Let \(L\) be a bicyclic étale \(E\)-algebra of dimension \(p^2\). We view the factor group \(\text{Br}(L/E)/\text{Br}_{dec}(L/E)\) as a subset of \(F_3(E)\) identifying the class of an algebra \(A\) with \([A, L]\).

Let \(\chi\) and \(\eta\) in \(X(F)\) be linearly independent characters of order \(p\) and let \(E/F\) be a field extension such that \(\chi_E\) and \(\eta_E\) are linearly independent in \(X(E)\). Let \((A, L) \in S_3(E)\) and set \(K = E(\chi)\) and \(L = E(\chi, \eta) := K(\eta)\). As \(A\) is split by \(L\),
there is a central simple algebra B over the function field $E(x)$ (x is a variable) of degree p^2 such that
\begin{equation}
[B] = [A\sub{E(x)}] + (\eta_{E(x)} \cup (x))
\end{equation}
in $\text{Br}(E(x))$. We have $(B, K(x)) \in \mathcal{S}_2(E(x))$.

Proposition 4.3. Let $\chi, \eta \in \mathcal{X}(F)$ be characters of order p, E/F a field extension such that χ_E and η_E are linearly independent in $\mathcal{X}(E)$, $K = E(\chi)$, $L = E(\chi, \eta)$, A a central simple algebra of degree p^2 over E such that $(A, L) \in \mathcal{S}_3(E)$. Then
\[\text{ed}_p^\chi([B, K(x)]) \geq \text{ed}_p^\chi([A, L]) + 1\]
for the algebra B defined by (24).

Proof. Let $M/E(x)$ be a finite field extension of degree prime to p, $M_0 \subset M$ a subfield over F and $[B_0, R_0] \in \mathcal{F}_2(M_0)$ such that $\text{ed}_p^\chi([B, K(x)]) = \text{tr.deg}_p(M_0)$ and
\begin{equation}
[B_0, R_0]_M = [B, K(x)]_M
\end{equation}
in $\mathcal{F}_2(M)$. The last equality means that $R := K(x) \otimes_{E(x)} M \simeq R_0 \otimes_{M_0} M$ and
\begin{equation}
[B_M] = ([B_0]_M) + (\chi_M \cup (f))
\end{equation}
in $\text{Br}(M)$ for some $f \in M^\times$. Hence there is a character $\rho \in \mathcal{X}(M_0)$ such that $R_0 \simeq M_0(\rho)$ and $\rho_M = \chi_M$. Therefore, we can view the field $M_1 := M_0(\rho - \chi_{M_0})$ as a subfield of M. Replacing M_0 by M_1 and $[B_0, R_0]_M$ by $[B_0, R_0]_{M_1}$, we may assume that $\rho = \chi_{M_0}$, i.e., $R_0 = M_0(\chi)$.

We have $\partial([B]) = \eta$, where ∂ is taken with respect to the discrete valuation v on $E(x)$ associated to x. We extend the discrete valuation v on $E(x)$ to a discrete valuation v' on M with ramification index e' and inertia degree both prime to p (see [2] Lemma 1.1). Thus, the residue field N of v' is a finite extension of E of degree prime to p. Let v_0 be the restriction of v' to M_0 and N_0 its residue field. As $[N : E]$ is not divisible by p, it follows from (12) that $\partial([B_M]) = e' \cdot \eta_N \neq 0$. Hence the algebra B_M is ramified. It follows from (22) and (12) that
\begin{equation}
eq e' \cdot \eta_N = \partial([B_M]) = \partial(([B_0]_M)) + k \cdot \chi_N,
\end{equation}
where $k = v'(f)$. Note that the characters χ_N and η_N are linearly independent in $\mathcal{X}(N)$ since $[N : E]$ is not divisible by p. It follows that $\partial(([B_0]_M)) \neq 0$ and then B_0 is ramified; therefore v_0 is nontrivial and hence v_0 is a discrete valuation on M_0.

As $R = KM$, the valuation v' on M extends to a discrete valuation on R such that R/M is unramified.

Let $\eta_0 = \partial([B_0]) \in \mathcal{X}(N_0)\{p\}$. Choose a prime element π_0 in M_0 and write
\begin{equation}
([B_0]_{\widehat{M}_0}) = ([A_0] + (\eta_0 \cup (\pi_0))
\end{equation}
in $\text{Br}(\widehat{M}_0)$, where A_0 is a central simple algebra over N_0. By (11),
\begin{equation}
\text{ind}(B_0) = \text{ord}(\eta_0) \cdot \text{ind}(A_0)_{N_0(\eta_0)}.
\end{equation}

Let e be the ramification index of M/M_0 and let π be a prime element in M. Write $\pi_0 = u\pi^e$, $x = v\pi^e$ and $f = w\pi^k$ with u, v and w units in M. It follows from (23) that
\begin{equation}
eq e' \cdot \eta_N = e \cdot (\eta_0)_N + k \cdot \chi_N.
\end{equation}
As e' is relatively prime to p, η_N belongs to the subgroup of $X(N)$ generated by $(\eta_0)_N$ and χ_N. and $(\eta_0)_N \neq 0$ since χ_N and η_N are linearly independent. In particular, p divides $\text{ord}(\eta_0)_N$.

It follows from (22), (23) and (20) that

$$[(A_0)_N] + ((\eta_0)_N \cup (\tilde{u})) + (\tilde{\chi}_M \cup \tilde{(w)}) = [\tilde{A}_N] + (\tilde{\eta}_N \cup (v))$$

in $\text{Br}(\tilde{M})$; hence

$$[(A_0)_N] + ((\eta_0)_N \cup (\tilde{u})) + (\chi_N \cup (\tilde{w})) = [A_N] + (\eta_N \cup (\tilde{v}))$$

in $\text{Br}(N)$.

Since $\text{ind}(B_0) \leq p^2$, it follows from (24) that $\text{ord}(\eta_0) \leq p^2$.

Case 1. $\text{ord}(\eta_0)_N = \text{ord}(\eta_0) = p^2$. It follows from (20) that e is divisible by p. By (25), A_0 is split over $N_0(\eta_0)$; hence $[A_0] = \eta_0 \cup (\tilde{s}_0)$ for some $s_0 \in M_0^\times$. It follows from (24) that $[B_0]_{M_0} = \tilde{\eta}_0 \cup (s_0 \pi_0)$ in $\text{Br}(\tilde{M}_0)$; hence $[B_0]_{M_0(\chi)} = (\tilde{\eta}_0)_{N_0(\chi)} \cup (s_0 \pi_0)$ in $\text{Br}(\tilde{M}_0(\chi))$. As

$$\text{ind}(B_0)_{\tilde{M}_0(\chi)} \leq \text{ind}(B_0)_{M_0(\chi)} = \text{ind}(B_0)_{R_0} \leq p,$$

the order of $(\eta_0)_{N_0(\chi)}$ is at most p, i.e., $p\eta_0$ is a multiple of χ_{N_0}. As e is divisible by p, it follows from (26) that η_N is a multiple of χ_N, a contradiction.

Case 2. $\text{ord}(\eta_0)_N = p$. It follows from (20) that $(e, p) = 1$ and $(\eta_0)_N$ belongs to the subgroup generated by χ_N and η_N. Moreover,

$$\langle \chi_N, (\eta_0)_N \rangle = \langle \chi_N, \eta_N \rangle$$

in $X(N)$. Let $K_0 = N_0(\chi)$. It follows from (23) that

$$[(B_0)_{R_0}] = [(A_0)_{K_0}] + ((\eta_0)_{K_0} \cup (\pi_0)).$$

As $(B_0, R_0) \in S_2(M_0)$, we have $\text{ind}(B_0)_{R_0} \leq p$. Since η_0 is not a multiple of χ_{N_0}, the character $(\eta_0)_{K_0}$ is nontrivial, and it follows from (11) that A_0 is split by $K_0(\eta_0)$.

As $p\eta_0$ is split by N, we can view the field $N_1 := N_0(p\eta_0)$ as a subfield of N. Replacing N_0 by N_1 and A_0 by $(A_0)_{N_1}$, we may assume that η_0 is of order p in $X(N_0)$.

Let $L_0 = N_0(\chi, \eta_0) = K_0(\eta_0)$. Then

$$L_0 \otimes_{N_0} N = N(\chi, \eta_0) = N(\chi, \eta) = L \otimes_E N$$

is a bicyclic field extension of degree p^2 and hence so is the extension L_0/N_0. In particular, χ_{N_0} and η_0 generate a subgroup of order p^2 in $X(N_0)$.

As A_0 is split by L_0, we may assume that $\text{deg}(A_0) = p^2$ and hence $(A_0, L_0) \in S_3(N_0)$.

It follows from (28) that $[A_N] - [(A_0)_N] \in \text{Br}_{dec}(L \otimes_E N/N)$. By (29), the pairs $(A_N, L \otimes_E N)$ and $([(A_0)_N, L_0 \otimes_{N_0} N) = (A_0, L_0)_N$ are equivalent in $S_3(N)$. Then the class $[A, L]$ in $\mathcal{F}_3(E)$ is p-defined over N_0; therefore,

$$\text{ed}_p^F([B, K(x)]) = \text{tr. deg}_E(M_0) \geq \text{tr. deg}_E(N_0) + 1 \geq \text{ed}_p^F([A, L]) + 1.$$
Let L/F be a bicyclic field extension of degree p^2. Write T for the torus over F of norm 1 elements for the field extension L/F. Let $t \in T(F(T))$ be the generic point and let $[A, L(T)]$ be the corresponding element in $\mathcal{F}_3(F(T))$ via the isomorphism between $T(F(T))/R$ and $\text{Br}(L(T)/F(T))/\text{Br}_{dec}(L(T)/F(T))$ in Proposition 2.3.

Proposition 4.4. $\text{ed}_{p^2}(F_1(A, L(T))) \geq p^2 - 1$.

Proof. Let $M/F(T)$ be a field extension of degree prime to p, $M_0 \subset M$ a subfield over F and $[A_0, L_0] \in \mathcal{F}_3(M_0)$ such that $[A_0, L_0]_M = [A, L(T)]_M$. We need to prove that $\text{tr. deg}_F(M_0) \geq p^2 - 1$. Set $LM = L \otimes_F M$. As $L_0 \otimes_{M_0} M \simeq LM$, we may assume that $L_0 \subset LM$.

Let T_0 be the torus over M_0 of norm 1 elements for the extension L_0/M_0. We have $(T_0)_M \simeq T_M$. Consider the commutative diagram

$$
\begin{array}{ccc}
T_0(M_0)/R & \longrightarrow & T(M)/R \\
\downarrow & & \downarrow \\
\mathcal{F}_3(M_0) & \longrightarrow & \mathcal{F}_3(M),
\end{array}
$$

where the vertical injective maps are given by the isomorphisms in Proposition 2.3. The pair $[A_0, L_0]$ belongs to the image of the left vertical map in the diagram. Hence there exists an element $t_0 \in T_0(M_0)$ such that $(t_0)_M$ in $T_0(M) = T(M)$ is R-equivalent to t_M. We have $\text{deg}(t) = 1$; therefore, $\text{deg}(t_M)$ is not divisible by p as $[M : F(T)]$ is prime to p. By Theorem 3.10 $\text{deg}((t_0)_M) = \text{deg}(t_M)$ modulo p; hence $\text{deg}((t_0)_M) \neq 0$. It follows that $(t_0)_M$, viewed as a morphism $\text{Spec}(M) \to T$, is dominant. Therefore, there is a field homomorphism $F(T) \to M$ over F taking t to $(t_0)_M$. The elements $\rho(t)$ over all $\rho \in G := \text{Gal}(L/F)$ generate the field $L(T)$ over L. Hence the elements $\rho((t_0)_M)$ generate a subfield in LM over L of the transcendence degree $\dim(T) = p^2 - 1$. As $t_0 \in L_0$ and L_0 is normal over M_0 and hence is G-invariant, the elements $\rho(t_0)$ generate a subfield in L_0 over F of the transcendence degree $p^2 - 1$. It follows that $\text{tr. deg}_F(L_0) \geq p^2 - 1$; hence $\text{tr. deg}_F(M_0) \geq p^2 - 1$. □

Remark 4.5. Let L be a bicyclic field extension of degree p^2 of a field F of arbitrary characteristic and let $T = R_{L/F}(\mathbb{G}_m, L)$. A similar argument as the one in the proof of Proposition 1.3 shows that $\text{ed}_p(T/R) = p^2 - 1$, where T/R is the functor taking a field E to $T(E)/R$.

4.4. The main theorem.

Theorem 4.6. Let p be a prime integer and F a field of characteristic different from p. Then

$$
\text{ed}_p(\text{PGL}_F(p^2)) = p^2 + 1.
$$

Proof. Recall that $\text{ed}_p(\text{PGL}_F(p^2)) = \text{ed}_p(F_1)$. First we prove the inequality $\text{ed}_p(F_1) \geq p^2 + 1$. We may replace F by any field extension. In particular, we may assume that there are linearly independent characters $\chi, \eta \in X(F)$ of order p; hence $L := F(\chi, \eta)/F$ is a bicyclic field extension of degree p^2. Set $K = F(\chi)$ and $K' = F(\eta)$. Let T be the norm 1 torus for the extension L/F and set $E := F(T)$. Let $[A, LE]$ be the element of $\mathcal{F}_3(E)$ corresponding to the generic point $t \in T(E)$ via the isomorphism in Proposition 2.3. Consider the pair $(B, KE(x)) \in \mathcal{S}_2(E(x))$.
with
\[(30) \quad [B] = [A_E(x)] + (\eta_{E(x)} \cup (x))\]
in $\text{Br}(E(x))$ and the algebra C of degree p^2 over $E(x,y)$ with
\[\quad [C] = [B_{E(x,y)}] + (\chi_{E(x,y)} \cup (y))\]
in $\text{Br}(E(x,y))$.

We claim that the pair $(B, KE(x))$ in $S_2(E(x))$ and the character $\chi_{E(x)}$ satisfy the condition (\ast). Let $N/E(x)$ be a finite field extension of degree prime to p with $[B_N] = \rho \cup (s)$ in $\text{Br}(N)$ for some $s \in N^\times$ and a character $\rho \in X(N)$ of order p^2 such that $p \cdot \rho$ is a multiple of χ_N. Extend the discrete valuation of the field $F(x)$ associated to x to a discrete valuation v on N with the ramification index e' prime to p and residue field P of degree prime to p over E. As $p \cdot \rho$ is a multiple of χ_N and the extension $\tilde{N}(\chi)/\tilde{N}$ is unramified, the ramification index e of $\tilde{N}(\rho)/\tilde{N}$ is either 1 or p.

Case 1. $e = 1$. We have $\rho_{\tilde{N}} = \tilde{\mu}$ for a character $\mu \in X(P)$ of order p^2. By (30), we have
\[e' \eta_P = \partial([B_{\tilde{N}}]) = v(s)\mu_P.\]
As ρ_P is of order p^2, the character $p \cdot \mu_P$ is a multiple of χ_N. On the other hand, $p \cdot \mu$ is a multiple of χ_P by assumption; i.e., χ_P and η_P are linearly dependent, a contradiction.

Case 2. $e = p$. It follows that P contains primitive roots of unity of degree p (see $[9]$), so we can identify $\rho X(P)$ with P^x/P^x_p. Let π be a prime element in N and ν the corresponding character of order p in $X(N)$. We can write $\rho = \tilde{\mu} + l\nu$ for some character $\mu \in X(P)$ of order p^2 and an integer l prime to p. Noting that $\chi_N = p \cdot \rho = p \cdot \tilde{\mu}$, we have $p \cdot \mu = \chi_P$.

Write $s = u\pi^j$ for a unit u in N. Then
\[(31) \quad [B_N] = \rho \cup (s) = (\tilde{\mu} + l\nu) \cup (u\pi^j) = \tilde{\mu} \cup (u) + (j\tilde{\mu}) \cup (\pi) + \nu \cup (w),\]
where $w = (-1)^j u^d$. Let ϵ be the character in $X(P)$ of exponent p corresponding to \tilde{w}. As $\nu \cup (w) + \tilde{\epsilon} \cup (\pi) = 0$, it follows from (30) that
\[e' \eta_P = \partial([B_{\tilde{N}}]) = j\mu - \epsilon.\]
Since μ is of order p^2, we have $j = pk$ for some integer k. Hence $\epsilon = kp \cdot \mu - e' \eta_P = k\chi_P - e' \eta_P$. Note that the characters χ and η are defined over F. It follows that the classes of \tilde{w} and \tilde{u} belong to the image of F^x/F^{x_p} in P^x/P^{x_p}. By (30) and (31),
\[p[A_P] = p(\mu \cup (u)) = \chi_P \cup (u) \in \text{Im}(\text{Br}(F) \to \text{Br}(N)).\]
Taking the corestriction for the extension P/E of degree prime to p, we see that the class $p[A]$ belongs to the image of the map $\text{Br}(F) \to \text{Br}(E)$. This contradicts Corollary $[9]$ Thus, we have checked the condition (\ast).

By Propositions $[4.1]$ $[4.3]$ and $[4.4]$
\[\text{ed}_p(\text{PGL}_F(p^2)) = \text{ed}_p(\text{F}_1) \geq \text{ed}_p([C]) \geq \text{ed}_p([B, KE(x)]) + 1 \geq \text{ed}_p([C]) + 2 \geq (p^2 - 1) + 2 = p^2 + 1.\]

We shall show that $\text{ed}_p(\text{F}) \leq p^2 + 1$. As mentioned in the introduction, this was shown in $[9]$ Cor. 3.10(a)]. For completeness, we give the argument here.
Let $\mathcal{F}_1(E)$ be the set of isomorphism classes of central simple E-algebras of degree p^2 that are crossed products with the group $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$. So \mathcal{F}_1 is a subfunctor of \mathcal{F}_1. By [13 Th. 1.2], for every $[A] \in \mathcal{F}_1(E)$ there is a finite field extension E'/E of degree prime to p such that $[A_{E'}] \in \mathcal{F}_1(E')$. Hence the inclusion of \mathcal{F}_1 into \mathcal{F}_1 is p-surjective (see [11]). It follows that $\text{ed}_p(\mathcal{F}_1) \leq \text{ed}_p(\mathcal{F}_1) \leq p^2 + 1$. So it suffices to show that $\text{ed}(\mathcal{F}_1) \leq p^2 + 1$.

Let E/F be a field extension and $[A] \in \mathcal{F}_1(E)$. Then $[A] \in \text{Br}(L/E)$ for a bicyclic field extension L/F of degree p^2 with Galois group G generated by σ and τ. The exact sequence (2) yields an epimorphism

$$\text{Hom}_G(M, L^\times) \to \text{Br}(L/E).$$

Choose a G-homomorphism $\varphi : M \to L^\times$ corresponding to $[A]$ in $\text{Br}(L/E)$. Since $\text{rank}(M) = p^2 + 1$, the image of φ is contained in L_0^\times, where L_0 is a G-invariant subfield of L with $\text{tr.deg}_F(L_0) \leq p^2 + 1$. Note that G acts faithfully on M. Modifying φ by an element in the image of the map $\text{Hom}_G(A^2, L^\times) \to \text{Hom}_G(M, L^\times)$, we may assume that G acts faithfully on the image of φ and hence on L_0. Thus L_0 is a Galois extension of $E_0 := (L_0)^G$ with Galois group G, and φ defines a central simple E_0-algebra A_0 with $[A_0] \in \text{Br}(L_0/E_0)$ such that $A_0 \otimes_{E_0} E \simeq A$. Thus, A is defined over E_0; hence

$$\text{ed}(\mathcal{F}_1([A])) \leq \text{tr.deg}_F(E_0) = \text{tr.deg}_F(L_0) \leq p^2 + 1. \quad \Box$$

References

Department of Mathematics, University of California, Los Angeles, California 90095-1555

E-mail address: merkurev@math.ucla.edu