ESSENTIAL p-DIMENSION OF $\text{PGL}(p^2)$

ALEXANDER S. MERKURJEV

1. INTRODUCTION

Informally, the essential dimension of an “algebraic structure” over a field F is the smallest number of parameters required to define this structure over a field extension of F (see [1] or [11]). Thus, the essential dimension measures the complexity of the structure.

Let p be a prime integer. The essential p-dimension of an “algebraic structure” measures the complexity of the structure modulo the “effects of degree prime to p” (see [12]). In practice, the essential p-dimension is easier to compute than the essential dimension.

The formal definition of the essential (p-)dimension is as follows. Let p denote either a prime integer or 0. An integer k is said to be prime to p if k is prime to p when $p > 0$ and $k = 1$ when $p = 0$. Let F be a field. Consider the category Fields/F of field extensions of F and field homomorphisms over F. Let $\mathcal{F}: \text{Fields}/F \to \text{Sets}$ be a functor (an “algebraic structure”) and $K, E \in \text{Fields}/F$. An element $\alpha \in \mathcal{F}(E)$ is said to be p-defined over K (and K is called a field of p-definition of α) if there exist a finite field extension E'/E of degree prime to p (so $E' = E$ if $p = 0$), a field homomorphism $K \to E'$ over F and an element $\beta \in \mathcal{F}(K)$ such that the image of α under the map $\mathcal{F}(E) \to \mathcal{F}(E')$ coincides with the image of β under the map $\mathcal{F}(K) \to \mathcal{F}(E')$. The essential p-dimension of α, denoted $\text{ed}_p(\mathcal{F})(\alpha)$, is the least transcendence degree $\text{tr. deg}_p(K)$ over all fields of p-definition K of α. The essential p-dimension of the functor \mathcal{F} is

$$\text{ed}_p(\mathcal{F}) = \sup\{\text{ed}_p(\mathcal{F})(\alpha)\},$$

where the supremum is taken over fields $E \in \text{Fields}/F$ and all $\alpha \in \mathcal{F}(E)$.

We write $\text{ed}(\mathcal{F})$ for $\text{ed}_0(\mathcal{F})$ and simply call $\text{ed}(\mathcal{F})$ the essential dimension of \mathcal{F}. Clearly, $\text{ed}(\mathcal{F}) \geq \text{ed}_p(\mathcal{F})$ for all p.

Let G be an algebraic group over F. The essential p-dimension of G is the essential p-dimension of the functor $\mathcal{F}_G: \text{Fields}/F \to \text{Sets}$ taking a field E to the set of isomorphism classes of all G-torsors (principal homogeneous G-spaces) over $\text{Spec}(E)$.

If $G = \text{PGL}_n$ over F, the functor \mathcal{F}_G is isomorphic to the functor taking a field E to the set of isomorphism classes of central simple E-algebras of degree n. Let p be a prime integer and let p' be the highest power of p dividing n. Then $\text{ed}_p(\text{PGL}_F(n)) = \text{ed}_p(\text{PGL}_F(p'))$ [12 Lemma 8.5.5]. Every central simple
Let \(p \) be a prime integer and \(F \) a field of characteristic different from \(p \). Then
\[
ed_p(\text{PGL}_F(p^2)) = p^2 + 1.
\]

Corollary 1.2 (Rost). If \(F \) is a field of characteristic different from 2, then
\[
ed(\text{PGL}_F(4)) = 2 \geq 5.
\]

Proof. By Theorem 1.1 we have \(\ed(\text{PGL}_F(4)) \geq 5 \). On the other hand, \(\ed(\text{PGL}_F(4)) \leq 5 \) by [9]. \(\square \)

We use the following notation:
- \(F \) is a field, and \(\Gamma = \text{Gal}(F_{sep}/F) \) is the absolute Galois group of \(F \).
- \(X(F) \) is the character group of \(\Gamma \).
- \(\text{Br}(F) \) is the Brauer group of \(F \). For a field extension \(L/F \), we write \(\text{Br}(L/F) \) for the relative Brauer group \(\text{Ker}(\text{Br}(F) \to \text{Br}(L)) \).
- \(\mathbb{G}_m \) denotes the multiplicative algebraic group \(\text{Spec} F[t, t^{-1}] \) over \(F \).
- For a finite separable field extension \(L/F \), we write \(R_{L/F} \) for the corestriction operation (see [8, §20.5]). In particular, \(R_{L/F}(\mathbb{G}_{m,L}) \) is the multiplicative group of \(L \) considered as an algebraic group (torus) over \(F \). We write \(R_{L/F}(\mathbb{G}_{m,L}) \) for the torus of norm 1 elements in \(L \).
- If \(A \) is a central simple algebra over \(F \), then \(\text{SB}(A) \) denotes the Severi-Brauer variety of \(A \) of reduced rank 1 right ideals in \(A \) [8, §1.C].

If \(p \) is a prime integer and \(B \) is a torsion abelian group, we write \(B(p) \) for the \(p \)-primary component of \(B \) and \(p^nB \) for the subgroup of elements of exponent \(p^n \) in \(B \).

In the present paper, the word “scheme” over a field \(F \) means a separated scheme of finite type over \(F \) and a “variety” over \(F \) is an integral scheme over \(F \). If \(X \) is a scheme over \(F \) and \(E/F \) is a field extension, then \(X(E) = \text{Mor}_F(\text{Spec}(E), X) \) is the set of points of \(X \) over \(E \). We write \(X_E \) for the scheme \(X \times_F \text{Spec}(E) \).

2. Algebraic Tori

2.1. R-equivalence of algebraic tori
Let \(T \) be an algebraic torus over a field \(F \). As usual, we write \(T^* \) for the character group of \(T \) over a separable closure \(F_{sep} \) of \(F \). The group \(T^* \) is a \(\Gamma \)-lattice.

A torus \(P \) is **quasi-trivial** if \(P^* \) is a permutation lattice, i.e., if there is a \(\Gamma \)-invariant \(\mathbb{Z} \)-basis of \(P^* \).

Let \(E/F \) be a field extension. Recall that the group of R-equivalence classes \(T(E)/R \) is the factor group of \(T(E) \) modulo the subgroup \(RT(E) \) of all elements that are R-equivalent to 1 (see [3, §5] and [15, Ch. 6]). If \(P \) is a quasi-trivial torus, then \(P(E)/R = 1 \).

Example 2.1 ([3, Prop. 15]). Let \(L/F \) be a finite Galois field extension and \(T = R_{L/F}(\mathbb{G}_{m,L}) \) the torus of norm 1 elements in \(L \). Then the subgroup \(RT(F) \) is generated by elements of the form \(\sigma(u)/u \) over all \(\sigma \in \text{Gal}(L/F) \) and \(u \in L^\times \).
Example 2.2. The torus $T = R_{L/F}^{(1)}(\mathbb{G}_{m,L})$ is not rational if L/F is a bicyclic field extension of degree p^2 by [15] §4.8. Moreover, T is not R-trivial generically; i.e., there is a field extension E/F such that $T(E)/R \neq 1$. In fact, the image of the generic point of T in $T(F(T))/R$ is not trivial.

2.2. Characters, cyclic algebras and tori. For a field F, the character group $X(F)$ of Γ is equal to

$$\text{Hom}_\text{cont}(\Gamma, \mathbb{Q}/\mathbb{Z}) = H^1(F, \mathbb{Q}/\mathbb{Z}) \approx H^2(F, \mathbb{Z}).$$

For a character $\chi \in X(F)$, set $F(\chi) = (F_{\text{sep}})^{\text{Ker}(\chi)}$. Then $F(\chi)/F$ is a cyclic field extension of degree $\text{ord}(\chi)$. The Galois group $\text{Gal}(F(\chi)/F)$ has a canonical generator σ such that $\chi(\sigma) = \text{ord}(\chi)^{-1} + \mathbb{Z}$ for any lifting $\tilde{\sigma}$ of σ to Γ.

If $F' \subset F$ is a subfield and $\chi \in X(F')$, we write χ_F for the image of χ under the natural map $X(F') \to X(F)$ and write $F(\chi)$ for $F(\chi_F)$.

Let K/F be a cyclic field extension. Choose a character $\chi \in X(F)$ such that $K = F(\chi)$. The cup product

$$X(F) \otimes F^\times = H^2(F, \mathbb{Z}) \otimes H^0(F, F_{\text{sep}}^\times) \to H^2(F, F_{\text{sep}}^\times) = \text{Br}(F)$$

takes $\chi \otimes a$ to the class $\chi \cup (a)$ of a cyclic algebra split by K. In fact, every element of $\text{Br}(K/F)$ is of the form $\chi \otimes a$ for some $a \in F^\times$.

Let L be an étale F-algebra of dimension n and $S = R_{L/F}(\mathbb{G}_{m,L})/ \mathbb{G}_m$. The exact sequence

$$1 \to \mathbb{G}_m \to R_{L/F}(\mathbb{G}_{m,L}) \to S \to 1$$

and Hilbert Theorem 90 yield an isomorphism $\theta : H^1(F, S) \cong \text{Br}(L/F)$. Let $\alpha \in H^1(F, S)$ and let S_α be the corresponding principal homogeneous space of S. As S is an open subscheme of the projective space $\mathbb{P}_F(L)$, the variety S_α is an open subset of the Severi-Brauer variety $SB(\alpha)$ of a central simple F-algebra A_α of degree n such that $[A_\alpha] = \theta(\alpha)$ in $\text{Br}(L/F)$. Moreover, S_α is trivial if and only if A_α is split.

Let $\chi \in X(F)$ and $L = F(\chi)$. Then $S \simeq R_{L/F}^{(1)}(\mathbb{G}_{m,L})$ by Hilbert Theorem 90 and $[A_\alpha] = \chi \cup a$ for some $a \in F^\times$. Moreover, the principal homogeneous space S_α coincides with the fiber S_α of the norm homomorphism $R_{L/F}(\mathbb{G}_{m,L}) \to \mathbb{G}_m$ over a.

2.3. Bicyclic algebras and tori. Let χ and η be two characters in $X(F)$ of order p. Then the fields $K = F(\chi)$ and $K' = F(\eta)$ are cyclic extensions of F of degree p. Set $L = K \otimes_F K'$, so L is a bicyclic extension of F of degree p^2. The group $G = \text{Gal}(K/F) \times \text{Gal}(K'/F)$ acts naturally on L by automorphisms and G is generated by elements σ and τ such that $L^\sigma = K'$ and $L^\tau = K$.

Let I be the augmentation ideal in the group ring $\Lambda := \mathbb{Z}[G]$, i.e., $I = \text{Ker}(\varepsilon)$, where $\varepsilon : \Lambda \to \mathbb{Z}$ is defined by $\varepsilon(\rho) = 1$ for all $\rho \in G$. We have:

(1) $$\text{Br}(L/F) = H^2(G, L^\times) = \text{Ext}^2_G(\mathbb{Z}, L^\times) = \text{Ext}^1_G(I, L^\times).$$

Consider the exact sequences of G-modules

(2) $$0 \to M \to \Lambda^2 \overset{f}{\to} I \to 0,$$

where $f(x, y) = (\sigma - 1)x + (\tau - 1)y$ and $M = \text{Ker}(f)$ and

(3) $$0 \to \Lambda/\mathbb{Z}_G \overset{g}{\to} M \overset{h}{\to} \mathbb{Z}^2 \to 0,$$
where $N_G = \sum_{\rho \in G} \rho \in \Lambda$, $g(x + \mathbb{Z}N_G) = ((\tau - 1)x, (1 - \sigma)x)$ and $h(x, y) = (\varepsilon(x)/p, \varepsilon(y)/p)$.

Let T be the torus of norm 1 elements for the extension L/F and let T' be the torus with the character lattice M. We have
\[
(4) \quad T(E) = \text{Hom}_G(\Lambda/\mathbb{Z}N_G, (EL)^\times), \quad T'(E) = \text{Hom}_G(M, (EL)^\times)
\]
for any field extension E/F.

The exact sequences (2), (3), the isomorphisms (1) and (4) and Hilbert Theorem 90 yield a commutative diagram for any field extension E/F:
\[
\begin{array}{cccccc}
\text{Hom}_G(\mathbb{Z}^2, (EL)^\times) & \xrightarrow{h^*} & T'(E) & \xrightarrow{\alpha} & \text{Br}(EL/E) & \xrightarrow{0} \\
\text{Hom}_G(\Lambda^2, (EL)^\times) & \xrightarrow{\beta} & T(E) & \xrightarrow{g^*} & & \\
& & \downarrow & & \downarrow & \\
& & 0 & & \end{array}
\]

It follows that the cokernels of α and β are naturally isomorphic. The image of $\alpha : E^\times \to \text{Br}(EL/E)$ is the subgroup of decomposable elements $\text{Br}_{\text{dec}}(EL/E)$ of $\text{Br}(EL/E)$ generated by $\chi_E \cup (a)$ and $\eta_E \cup (b)$ with $a, b \in E^\times$.

The cokernel of $\beta : (EL)^\times \to T(E)$ is the group of R-equivalence classes $T(E)/R$ (see Example 2.4). We have proved:

Proposition 2.3. Let L/F be a bicyclic extension and $T = R^{1(1)}_{L/F}(\mathbb{G}_{m,L})$. Then for any field extension E/F, there is a natural isomorphism
\[
T(E)/R \simeq \text{Br}(EL/E)/\text{Br}_{\text{dec}}(EL/E).
\]

Let A' be a central simple algebra of degree p^2 over $F(T')$ corresponding to the generic point of T'. Also choose a central simple algebra A of degree p^2 over $F(T)$ corresponding to the generic point of T by Proposition 2.3. The field $F(T)$ is a subfield of $F(T')$ and the classes $[A_{F(T')}]$ and $[A']$ are congruent in $\text{Br}(L(T')/F(T'))$ modulo $\text{Br}_{\text{dec}}(L(T')/F(T'))$. It follows that $p[A_{F(T')}] = p[A']$ in $\text{Br}(F(T'))$.

The exact sequence of G-modules
\[
0 \to L^\times \oplus M \to L(T')^\times \to \text{Div}(T_L') \to 0
\]
induces an exact sequence
\[
H^1(G, \text{Div}(T_L')) \to H^2(G, L^\times) \oplus H^2(G, M) \to H^2(G, L(T')^\times).
\]

As $\text{Div}(T_L')$ is a permutation G-module, the first term in the sequence is trivial. Therefore, we get an injective homomorphism
\[
\varphi : H^2(G, M) \to \text{Br}(F(T'))/\text{Br}(F).
\]
It follows from (2) that
\[
H^2(G, M) \simeq H^1(G, I) \simeq \hat{H}^0(G, \mathbb{Z}) = \mathbb{Z}/p^2\mathbb{Z};
\]
thus, $H^2(G, M)$ has a canonical generator ξ of order p^2.

\[\text{License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use} \]
Lemma 2.4. We have $\varphi(\xi) = -[A'] + \text{Br}(F)$.

Proof. Consider the following diagram:

$$
\begin{array}{ccc}
\text{Hom}_G(\mathbb{Z}, \mathbb{Z}) & \to & \text{Ext}_G^1(\mathbb{Z}, I) \\
\downarrow & & \downarrow \\
\text{Hom}_G(I, I) & \to & \text{Ext}_G^1(\mathbb{Z}, I) \\
\downarrow & & \downarrow \\
\text{Hom}_G(M, M) & \to & \text{Ext}_G^1(I, M) \\
\downarrow & & \downarrow \\
\text{Hom}_G(M, L(T')^\times) & \to & \text{Ext}_G^1(I, L(T')^\times) \\
\downarrow & & \downarrow \\
& & \text{Ext}_G^2(\mathbb{Z}, L(T')^\times).
\end{array}
$$

By [2] Ch. XIV, the images of 1_2 and -1_I agree in $\text{Ext}_G^1(\mathbb{Z}, I)$ and the images of 1_M and -1_I agree in $\text{Ext}_G^2(I, M)$. It follows from [2] Ch. V, Prop. 4.1 that the upper square is anticommutative. The image of 1_2 is equal to $\varphi(\xi)$ and the image of 1_M is equal to $[A'] + \text{Br}(F)$ in the right bottom corner.

Corollary 2.5. The class $p[A]$ in $\text{Br} F(T)$ does not belong to the image of $\text{Br}(F) \to \text{Br} F(T)$.

Proof. The image of $p[A]$ in $\text{Br} F(T')$ coincides with $p[A']$. Modulo the image of the map $\text{Br}(F) \to \text{Br} F(T')$, the class $p[A']$ is equal to $-\varphi(p\xi)$ and therefore, is nonzero as φ is injective.

3. Degree of points of the norm 1 torus for a bicyclic field extension

3.1. Chow groups and push-forward homomorphism. Let X be a scheme over a field F. We write $Z(X)$ for the group of algebraic cycles on X, i.e., the free abelian group generated by points of X. We write $\text{CH}(X)$ for the factor group of $Z(X)$ by the subgroup of cycles rationally equivalent to 0 (see [3] §1.3]). The groups $Z(X)$ and $\text{CH}(X)$ are graded by the dimension of points. If $x \in X$ is a point of dimension i, $[x]$ denotes the class of x in $\text{CH}_i(X)$.

If X is a variety of dimension d, then the group $\text{CH}_d(X)$ is infinite cyclic generated by the class of the generic point of X.

Let $f : X \to Y$ be a morphism of schemes over F. The push-forward homomorphism $f_* : Z(X) \to Z(Y)$ is a graded homomorphism defined by

$$f_*(x) = \begin{cases} [F(x) : F(y)] : y, & \text{if } [F(x) : F(y)] \text{ is finite;} \\ 0, & \text{otherwise,} \end{cases}$$

where $x \in X$ and $y = f(x)$. If f is a proper morphism, then f_* factors through the rational equivalence, defining the push-forward homomorphism $\text{CH}(X) \to \text{CH}(Y)$ still denoted by f_* (see [3] §1.4]).

3.2. Degree of a point. Let X be a scheme over a field F, $a \in X(E)$ a point over a field extension E/F and $\{x\}$ the image of $a : \text{Spec}(E) \to X$. The dimension of a is the integer $\dim(a) := \dim(x)$. If $f : X \to Y$ is a morphism of varieties over F and
Let $a \in X(E)$ for a field extension E/F, we have $\dim(a) \geq \dim(f(a))$. If $d = \dim(a)$, we define the class $[a]$ of a in $\text{CH}_d(X)$ as follows:

$$[a] := \begin{cases} [E : F(x)] \cdot [x], & \text{if } [E : F(x)] \text{ is finite;} \\ 0, & \text{otherwise.} \end{cases}$$

In addition, if X is a variety, the degree of a is the integer $\deg(a)$ satisfying $[a] = \deg(a) \cdot [x]$ if $\dim(a) = \dim(X)$ and x is the generic point of X, and $\deg(a) = 0$ otherwise.

If E'/E is a field extension and $a \in X(E)$, we write $a_{E'}$ for the image of a in $X(E')$. If E'/E is finite, we have $\deg(a_{E'}) = [E' : E] \cdot \deg(a)$.

If $E = F(X)$ is the function field of X and $a \in X(E)$ is the generic point, then $\deg(a) = 1$.

Proposition 3.1. Let $f : X \to Y$ be a proper morphism of varieties over F and let $a \in X(E)$ be a point over a field extension E/F. Then $[f(a)] = f_*(<[a]])$ in $\text{CH}(Y)$.

Proof. Let $\{x\}$ be the image of a in X and $y = f(x)$. If one of the field extensions $E/F(x)$ and $F(x)/F(y)$ is infinite, then $[f(a)] = 0$ and $f_*(<[a]]) = 0$. We may assume that E is a finite extension of $F(y)$. Then

$$[f(a)] = [E : F(y)] \cdot [y] = [E : F(x)]([F(x) : F(y)] \cdot [y]) = [E : F(x)] \cdot f_*([x]) = f_*(<[a]])$$.

If Z is a scheme over F, we write $n(Z)$ for the gcd$[F(z) : F]$ over all closed points $z \in Z$.

Example 3.2. Let T be an algebraic torus over F. We write $i(T)$ for the greatest common divisor of the integers $[E : F]$ over all finite field extensions E/F such that T is isotropic over E. If X is a smooth complete geometrically irreducible variety containing T as an open set, then $n(X \setminus T) = i(T)$ by [3 Lemme 12] (see also [10 Lemma 5.1]).

We shall need a variant of a push-forward homomorphism for morphisms that are not proper.

Proposition 3.3. Let X be a complete variety over F, $U \subset X$ an open subvariety, $Z = X \setminus U$ and $f : U \to Y$ a morphism over F, where Y is a variety of dimension d over F. If $n = n(Z_{F(Y)})$, then the push-forward homomorphism on cycles $f_* : Z(U) \to Z(Y)$, followed by the projection $Z(Y) \to Z_d(Y) = \mathbb{Z}$, gives rise to a well-defined homomorphism

$$f_* : \text{CH}(U) \to \mathbb{Z}/n\mathbb{Z}$$

Moreover, for any point $a \in U(E)$ over a field extension E/F, one has $f_*([a]) = \deg(f(a))$ modulo n.

Proof. We define the map f_* to be trivial on all homogeneous components $\text{CH}_i(U)$ except $i = d$, so we just need to define f_* on $\text{CH}_d(U)$.

We claim that the image of the push-forward homomorphism

$$s_* : \text{CH}_d(Z \times Y) \to \text{CH}_d(Y) = \mathbb{Z}$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
for the projection $s : Z \times Y \to Y$ is contained in $n\mathbb{Z}$. Let $u \in Z \times Y$ be a point of dimension d. If $s(u)$ is not the generic point of Y, then $s_*(\{u\}) = 0$. Otherwise, u is a closed point in $Z_{F(Y)} \subset Z \times Y$ and $s_*(\{u\})$ coincides with the degree of this closed point and hence is divisible by n. The claim is proven.

The map s_* factors as $s_* = q_* \circ i_*$, where $i : Z \times Y \to X \times Y$ is the closed embedding and $q : X \times Y \to Y$ is the projection. By localization [4, §1.8], $\text{CH}_d(U \times Y)$ is canonically isomorphic to the cokernel of i_*. By the claim, q_* gives rise to a homomorphism $\text{CH}_d(U \times Y) \to \mathbb{Z}/n\mathbb{Z}$. Composing it with the push-forward homomorphism for the closed embedding $(1_U, f) : U \to U \times Y$, we get the required homomorphism $f_* : \text{CH}_d(U) \to \mathbb{Z}/n\mathbb{Z}$. The last equality in the statement follows from Proposition 3.1 applied to q.

\[\square\]

Example 3.4. Let T be an algebraic torus over F and $n = i(T)$ (see Example 3.2). Then the structure morphism $T \to \text{Spec}(F)$ gives rise to a homomorphism $\text{CH}_d(T) \to \mathbb{Z}/n\mathbb{Z}$ that takes the class of a closed point $t \in T$ to $[F(t) : F]$ modulo n.

3.3. Chow groups of tori and Severi-Brauer varieties

Let p be a prime integer and let Z be the product of r copies of the projective space $\mathbb{P}_F(W)$, where W is a vector space of dimension $n > 0$ over F. Then

$$\text{CH}(Z) = Z[h] := Z[h_1, h_2, \ldots, h_r],$$

with $h_i^n = 0$ for all i, where h_i is the pull-back on Z of the class of a hyperplane on the ith factor of Z. Moreover, $Z[h]$ is the factor ring of the polynomial ring on the variables t_1, t_2, \ldots, t_r by the ideal generated by $t_1^n, t_2^n, \ldots, t_r^n$. Note that the homogeneous ith component $Z[h]_i$ is trivial if $i > r(n-1)$ and $Z[h]_{r(n-1)} = Z h^{n-1}$, where $h := h_1 h_2 \cdots h_r$.

Let K/F be a Galois field extension with a cyclic Galois group H of prime order p and let σ be a generator of H. Let V be a vector space of dimension $n > 0$ over K. Consider the variety $X = R_{K/F}(\mathbb{P}^r_K(V))$ over F. Then X_K is the product of p copies of $\mathbb{P}^r_K(V)$. The group H acts on the product by cyclic permutation of the factors. We have the graded ring homomorphism

$$\text{CH}(X) \to \text{CH}(X_K) = Z[h],$$

where $h = (h_1, h_2, \ldots, h_p)$.

The group H acts on $Z[h]$ permuting cyclically the h_i’s. Hence the image of the map $\text{CH}(X) \to Z[h]$ is contained in the subring $Z[h]^H$ of H-invariant elements, so we have the graded ring homomorphism

$$\text{CH}(X) \to Z[h]^H$$

(which is in fact an isomorphism). The image of an element $\alpha \in \text{CH}(X)$ in $Z[h]^H$ is denoted by $\bar{\alpha}$. For example, if α is the class of the subscheme $R_{K/F}(\mathbb{P}^r_K(W))$ of X, where W is a K-subspace of V of codimension $i = 0, 1, \ldots, n-1$, then $\bar{\alpha} = h^i$.

Consider the trace homomorphism

$$\text{tr} : Z[h] \to Z[h]^H$$

defined by $\text{tr}(x) = \sum_{i=0}^{p-1} \sigma^i(x)$. We write I for the image of tr. Clearly, I is a graded ideal in $Z[h]^H$. Note that

$$\text{(5) } (Z[h]^H)_j = \begin{cases} I_j, & \text{if } p \text{ does not divide } j; \\ \mathbb{Z} h^i + I_j, & \text{if } j = pi. \end{cases}$$
It follows that $\mathbb{Z}[h]^{H}$ is generated by I and h^i, $i = 0, 1, \ldots, n - 1$ as an abelian group. Moreover, $ph^i \in I$ for all j and $I_{p(n - 1)} = p\mathbb{Z}h^{n - 1}$.

Let A be a central simple algebra over K of degree n and let $Y = R_{K/F}(SB(A))$, where $SB(A)$ is the Severi-Brauer variety of A over K. The function field E of Y splits A and is linearly disjoint with K/F. Therefore, $Y_E \simeq X_E$ and we have the ring homomorphism

$$CH(Y) \to CH(Y_E) \simeq CH(X_E) \to \mathbb{Z}[h]^H.$$

The image of an element $\alpha \in CH(Y)$ in $\mathbb{Z}[h]^H$ is denoted by $\bar{\alpha}$.

Proposition 3.5. Let K/F be a cyclic field extension of prime degree p, let A be a nonsplit central simple K-algebra of degree p and $Y = R_{K/F}(SB(A))$. Then the image of the map $CH(Y) \to \mathbb{Z}[h]^H$ is contained in $\mathbb{Z} + I$.

Proof. Consider a more general situation: A is a central simple K-algebra of index p and degree n. Let $\alpha \in CH(Y)$. We shall prove in the cases 1 and 2 below that $\bar{\alpha} \in \mathbb{Z} + I$. By (2), we may assume that $\alpha \in CH^{p_1}(Y)$ for $i = 1, 2, \ldots, n - 1$. Let $a \in \mathbb{Z}$ be such that $\bar{\alpha} \equiv ah$ modulo I. It suffices to prove that a is divisible by p.

Case 1. $i = n - 1$. We have $\bar{\alpha} = bh^{n-1}$ for some $b \equiv a$ modulo p as $I_{p(n - 1)} = p\mathbb{Z}h^{n-1}$. Since h^{n-1} is the class of a rational point of Y over a splitting field and the degree of every closed point of Y is divisible by p, we have $h \in p\mathbb{Z}$. Therefore, $a \in p\mathbb{Z}$.

Case 2. i divides $n - 1$. Write $n - 1 = ij$. We have $\alpha^j \in CH^{p(n-1)}(Y)$ and $\alpha^j \equiv a^j h^{n-1}$ modulo I. By Case 1, a^j and hence a is divisible by p.

Now assume that A is a central division K-algebra of degree p and $\alpha \in CH^{p_1}(Y)$ with $i = 1, 2, \ldots, p - 1$. We shall prove that $\bar{\alpha} \in I$. Write $ik + pm = 1$ for some integers k and $m > 0$. The Severi-Brauer variety $SB(M_m(A))$ can be identified with the variety of the reduced rank 1 right A-submodules in the free right A-module A^m. The projection to the last component A of A^m gives rise to a rational morphism $SB(M_m(A)) \to SB(A)$ that is defined on the complement U of the variety $SB(M_{m-1}(A))$ embedded into $SB(M_m(A))$ as a closed subvariety via the inclusion $A^{m-1} \to A^m$, $(a_1, \ldots, a_{m-1}) \mapsto (a_1, \ldots, a_{m-1}, 0)$. Moreover, the projection $U \to SB(A)$ is a vector bundle.

Let $Y' = R_{K/F}(SB(M_m(A)))$ and $U' = R_{K/F}(U)$. Then U' is an open subscheme of Y' and the natural morphism $U' \to Y$ is a vector bundle. Hence we have a surjective homomorphism

$$CH(Y') \to CH(U') \simeq CH(Y).$$

Moreover, the diagram

$$\begin{array}{c}
CH(Y') \longrightarrow CH(Y) \\
\downarrow \downarrow \\
\mathbb{Z}[h]^H \longrightarrow \mathbb{Z}[h]^H,
\end{array}$$

where the bottom map takes a monomial h^{α} to h^{α} if $\alpha_i < p$ for all i and to 0 otherwise, is commutative. Lift α to an element $\alpha' \in CH^{p_1}(Y')$. As i divides $pm - 1$, By Case 2 applied to the algebra $M_m(A)$, we have $\bar{\alpha}' \in I'$. Since the bottom map in the diagram takes I' to I, we have $\bar{\alpha} \in I$. \square
Let K'/F be a cyclic field extension of degree p and
\[S = (R_{K'/F}^1(\mathbb{G}_m,K'))^r \simeq (R_{K'/F}(\mathbb{G}_m,K')/\mathbb{G}_m)^r \]
for some $r > 0$. We view the variety of the group S as an open subset of $Z := \mathbb{P}_F(K')^r$. Hence the restriction gives a surjective ring homomorphism
\[(\mathbb{Z}/p\mathbb{Z})[h] = \text{Ch}(Z) \rightarrow \text{Ch}(S), \]
where $h = (h_1, h_2, \ldots, h_r)$, $h_i^p = 0$ for all i, and we write Ch for the Chow groups modulo p. We shall also write \bar{h}_i for the image of h_i in $\text{Ch}^1(S)$. The class in $\text{Ch}^r(p^{r-1})(S)$ of a rational point of S is equal to \bar{h}^{p-1}, where $\bar{h} = \bar{h}_1\bar{h}_2\cdots\bar{h}_r \in \text{Ch}^0(S)$. As $i(S) = p$, we have $\bar{h}^{p-1} \neq 0$ by Example 3.2.

Proposition 3.6. The map $(\mathbb{Z}/p\mathbb{Z})[h] \rightarrow \text{Ch}(S)$ is a ring isomorphism.

Proof. Suppose that $f(\bar{h}_1, \bar{h}_2, \ldots, \bar{h}_r) = 0$ for a nonzero homogeneous polynomial f over $\mathbb{Z}/p\mathbb{Z}$. Suppose that a monomial $\bar{h}_1^{\alpha_1} \cdots \bar{h}_r^{\alpha_r}$ enters f with a nonzero coefficient. Multiplying the equality by $\bar{h}_1^{\beta_1} \cdots \bar{h}_r^{\beta_r}$ with $\beta_i = p - 1 - \alpha_i$, we get $\bar{h}^{p-1} = 0$, a contradiction.

For an element α in $\text{Ch}(S)$ we shall write $\bar{\alpha}$ for the corresponding element in $(\mathbb{Z}/p\mathbb{Z})[h]$.

Consider the homomorphism $f : S \times S \rightarrow S$ defined by $f(x, y) = xy^{-1}$. Recall that as $i(S) = p$, by Example 3.3 and Proposition 3.6, we have the homomorphism
\[f_* : \text{CH}_{r(p-1)}(S \times S) \rightarrow (\mathbb{Z}/p\mathbb{Z}). \]

Lemma 3.7. For any $\alpha \in \text{Ch}^i(S)$ and $\beta \in \text{Ch}^j(S)$ with $i + j = r(p - 1)$, we have
\[\bar{\alpha} \cdot \bar{\beta} = f_*(\alpha \times \beta)h^{p-1} \]
in $(\mathbb{Z}/p\mathbb{Z})[h]$.

Proof. It suffices to consider the case when α and β are monomials in \bar{h}_i. As both sides of the equality commute with products, we may assume that $r = 1$, i.e., $S = R_{K'/F}(\mathbb{G}_m,K')/\mathbb{G}_m$, and $\alpha = \bar{h}^i$, $\beta = \bar{h}^j$. The cycles α and β are represented by $\mathbb{P}(U) \cap S$ and $\mathbb{P}(W) \cap S$, where U and W are F-subspaces of K' of codimensions i and j, respectively. The fiber of the restriction
\[f' : (\mathbb{P}(U) \cap S) \times (\mathbb{P}(W) \cap S) \rightarrow S \]
of f over a point s of S is isomorphic to $\mathbb{P}(U \cap sW) \cap S$. The vector space $U \cap sW$ is one-dimensional for a generic s; hence f' is a birational isomorphism and $f'_*(\alpha \times \beta) = 1 + p\mathbb{Z}$. On the other hand, $\bar{\alpha} \cdot \bar{\beta} = \bar{h}^i \cdot \bar{h}^j = h^{p-1}$. \hfill \square

Let L/F be a bicyclic field extension of degree p^2 and $T = R_{L/F}^1(\mathbb{G}_m,L)$. Choose a subfield K of L of degree p over F and let $t \in K^\times$ be an element with $N_{K/F}(t) = 1$; i.e., t is an F-point of the torus $R_{K/F}^1(\mathbb{G}_m,K)$. Write S_t for the fiber of the norm homomorphism $T \rightarrow R_{K/F}^1(\mathbb{G}_m)$ over t. The variety S_t is a principal homogeneous space of the torus $S = R_{K/F}^1(\mathbb{G}_m,K)$.

The variety S_t is canonically isomorphic to an open subscheme of the variety $Y := R_{K/F}(\text{SB}(A_t))$ for a central simple K-algebra A_t of degree p (see Section 2.2). Over the function field E of SB(A_t) over K, the varieties S_t and S become isomorphic to the torus $(R_{L/E}^1(\mathbb{G}_m,E))^p$, where $LE = L \otimes_K E$, so we can apply
the constructions considered above to the torus S_E over E. In particular, we have that the element $\bar{\alpha} \in (\mathbb{Z}/p\mathbb{Z})[h]$ is well defined for any cycle α on S_t and S.

Consider the morphism

$$f : S_t \times S \to S_t, \quad f(x, y) = xy^{-1}.$$

We have defined the homomorphism (see (6)):

$$f_* : \text{CH}_{p(p-1)}(S_t \times S) \to \text{CH}_{p(p-1)}((S_t)E \times S_E) \to \mathbb{Z}/p\mathbb{Z}.$$

Proposition 3.8. Suppose that the principal homogeneous space S_t is not trivial. Then $f_*(\alpha \times \bar{h}^j) = 0$ for any $\alpha \in \text{CH}^{p(p-j-1)}(S_t)$ and $j = 0, 1, \ldots, p-2$.

Proof. As S_t is not trivial, the algebra A_t is not split. We can lift α to a cycle β in $\text{Ch}(Y)$. By Proposition 3.3, β belongs to the image I of the ideal I in $(\mathbb{Z}/p\mathbb{Z})[h]^H$. It follows that $\alpha \cdot h^j = \beta \cdot h^j \in I_{p(p-1)} = 0$. Lemma 3.7 (applied to the field extension E of F and $r = p$) shows that $f_*(\alpha \times h^j) = 0$. \qed

3.4. A key proposition. Let p be a prime integer, L/F a bicyclic field extension of degree p^2, $G = \text{Gal}(L/F)$, σ and τ generators of G. Consider the tori $T = R_{L/F}(\mathbb{G}_{m,L})$ of norm 1 elements in L/F and $P = R_{L/F}(\mathbb{G}_{m,L})/\mathbb{G}_m$, both of dimension $d := p^2 - 1$. The torus T (respectively, P) becomes isotropic over a field extension E/F if and only if $E \otimes_F L$ is not a field. It follows that $i(T) = i(P) = i(T \times P) = p$.

Consider the morphisms f and g from $T \times P$ to T defined by $f(t, v) = t$ and $g(t, v) = \sigma(t)\tau(v)/v$. By Proposition 3.3 and Example 3.2, f and g give rise to well-defined homomorphisms f_* and g_* from $\text{CH}_d(T \times P)$ to $\mathbb{Z}/p\mathbb{Z}$.

Proposition 3.9. The maps f_* and g_* coincide.

Proof. The torus P is an open subscheme in the projective space $\mathbb{P}_F(L)$; hence the ring $\text{CH}(P)$ is generated by the restriction to P of the class e of a hyperplane in $\mathbb{P}_F(L)$. Moreover, by the Projective Bundle Theorem [4, Th. 3.3], $\text{CH}_d(T \times P)$ coincides with the sum of subgroups $\text{CH}_i(T) \times e^i$ over all $i = 0, 1, \ldots, d$.

Let $\beta \in \text{CH}_d(T)$. It suffices to show that $f_*(\beta \times e^i) = g_*(\beta \times e^i)$ for any $i = 0, 1, \ldots, d$. If $i = d$, the class e^d is represented by the identity point 1 of P. The equality follows from the fact that f and g coincide on $T \times \{1\}$.

Now assume that $i < d$. In this case, $f_*(\beta \times e^i) = 0$ and we need to show that $g_*(\beta \times e^i) = 0$.

Let K be the subfield of σ-invariant elements in L of degree p over F. We have $pk + 1 \leq p^2 - i \leq p(k + 1)$ for some integer $k = 0, \ldots, p - 1$. Consider a K-linear subspace W of L of K-dimension k such that $K \cap W = 0$. Let V be an F-subspace of L of dimension $p^2 - i$ over F such that

$$F \oplus W \subset V \subset K \oplus W.$$

The class of $P \cap \mathbb{P}(V)$ in $\text{CH}^i(P)$ is equal to e^i.

The torus $S := R_{K/F}(R_{L/K}(\mathbb{G}_{m,L}))$ is the kernel of the norm homomorphism $T \to T_1 := R_{K/F}(\mathbb{G}_{m,K})$, so we have an exact sequence

$$(7) \quad 1 \to S \to T \to T_1 \to 1.$$
By Hilbert Theorem 90, $S \simeq R_{K/F}(R_{L/K}(\mathbb{G}_{m,L})/\mathbb{G}_{m,K})$. We view S as an open subscheme of $R_{K/F}(\mathbb{P}_K(L))$. The map g factors as follows:

$$T \times P \overset{1 \times l}{\longrightarrow} T \times S \overset{g}{\longrightarrow} T,$$

where $l : P \rightarrow S$ is defined by $l(v) = v/\sigma(v)$ and $r(t, s) = ts^{-1}$. The image of $P \cap \mathbb{P}_F(K \oplus W)$ under l is the variety $S \cap R_{K/F}(\mathbb{P}_K(K \oplus W))$ of dimension pk in $S \simeq R_{K/F}(R_{L/K}(\mathbb{G}_{m,L})/\mathbb{G}_{m,K})$. Therefore, if $p^2 - 1 > pk + 1$, then $\dim(P \cap \mathbb{P}(V)) > pk$, but the dimension of the image of $P \cap \mathbb{P}(V)$ under l is at most pk, so $P \cap \mathbb{P}(V)$ loses dimension under l; therefore, $g_*(\beta \times e^1) = 0$.

It remains to consider the case $p^2 - 1 = pk + 1$, $k = 1, \ldots, p - 1$, i.e., $V = F \oplus W$. Since the map $P \cap \mathbb{P}(V) \rightarrow R_{K/F}(\mathbb{P}_K(K \oplus W))$ given by l is a birational isomorphism, and the class of $R_{K/F}(\mathbb{P}_K(K \oplus W))$ in $CH(S)$ is equal to h^{p-1}, where $h \in CH^0(S)$ is the class given by a K-hyperplane in L, it suffices to show that $r_*(\beta \times h^{p-1}) = 0$.

Let S_t be the fiber of the norm homomorphism $T \rightarrow T_1$ over the generic point t of T_1, so S_t is a principal homogeneous space of S over the function field $F(T_1)$. Denote by $r' : S_t \times S \rightarrow S_t$ the morphism given by $r'(x, s) = xs^{-1}$. Thus we have a commutative diagram

$$
\begin{array}{ccc}
S_t \times S & \xrightarrow{r'} & S_t \\
\downarrow q & & \downarrow m \\
T \times S & \xrightarrow{r} & T,
\end{array}
$$

where m is the canonical morphism and $q = m \times 1_S$. It follows that r_* factors as the composition

$$CH_d(T \times S) \xrightarrow{q^*} CH_{p-1}(S_t \times S) \xrightarrow{r'^*} \mathbb{Z}/p\mathbb{Z}.$$

Thus, it suffices to show that $r'^*(\alpha \times h^{p-1}) = 0$ for any $\alpha \in CH^k(S_t)$. This follows from Proposition 3.8 applied to the torus S over the field $F(T_1)$ (with $j = p - k - 1$) if we show that S_t is a nontrivial principal homogeneous space of S. Suppose that S_t has a point over $F(T_1)$. It follows that the exact sequence (1) splits rationally; i.e., the torus T is birationally isomorphic to the product $S \times T_1$ and hence is a rational variety. But T is not rational (see Example 2.2), a contradiction.

3.5. Invariance of the degree under R-equivalence.

Theorem 3.10. Let p be a prime integer, L/F a bicyclic field extension of degree p^2 and $T = R_{L/F}^1(\mathbb{G}_{m,L})$. Let M/F be a field extension and let t and t' be R-equivalent points in $T(M)$. Then $\deg(t) \equiv \deg(t') \pmod{p}$.

Proof. We have $t' = t \cdot \sigma(u)u^{-1} \cdot \tau(v)v^{-1}$ for some $u, v \in (LM)^\times$ (see Example 2.1). Let $t'' = t \cdot \sigma(u)u^{-1}$. It suffices to prove that $\deg(t) = \deg(t'')$ and $\deg(t') = \deg(t'')$ in $\mathbb{Z}/p\mathbb{Z}$. We shall prove the first equality (the second being similar). So replacing t'' by t' we may assume that $t' = t \cdot \sigma(u)u^{-1}$.

Consider the point $w = (t, u)$ in $(T \times P)(M)$ and two morphisms f and g from $T \times P$ to T as in Section 3.4. We have $f(w) = t$ and $g(w) = t'$. By Propositions 3.3 and 3.4, we have in $\mathbb{Z}/p\mathbb{Z}$:

$$\deg(t) = \deg f(w) = f_*(|w|) = g_*(|w|) = \deg g(w) = \deg(t').$$

\[\square\]
4. Essential p-dimension of $\text{PGL}(p^d)$

Let F be a field and p a prime integer different from $\text{char}(F)$.

4.1. Characters, central simple algebras and discrete valuations. Let v be a discrete valuation on a field extension E over F, N the residue field, and \widehat{E} the completion of E. Then N is a field extension of F.

Let C be a finite Galois module over F of order a power of p. There is an exact sequence of Galois cohomology groups $\mathbb{[5, Prop. 8.2]}$:

\[0 \to H^i(N, C) \to H^i(\widehat{E}, C) \to H^{i+1}(N, C(-1)) \to 0. \]

Taking $i = 1$ and $C = \mathbb{Z}/p^n\mathbb{Z}$ for some n, we get an exact sequence

\[0 \to p\cdot X(N) \xrightarrow{i} p\cdot X(\widehat{E}) \xrightarrow{\partial} \text{Hom}_{\Gamma}(\mu_{p^n}, \mathbb{Z}/p^n\mathbb{Z}) \to 0, \]

where μ_{p^n} is the Γ-module of p^nth roots of unity.

Let $\chi \in X(F)$. Recall that $F(\chi)/F$ is a cyclic field extension of degree $\text{ord}(\chi)$ with the choice of a generator of $\text{Gal}(F(\chi)/F)$. The group $X(N)$ is identified with the character group of the maximal unramified field extension of \widehat{E}. For a character $\chi \in p\cdot X(N)$, we write $\widehat{\chi}$ for the corresponding character in $p\cdot X(\widehat{E})$.

Taking $i = 2$ and $C = \mu_{p^n}$ for all n, we get an exact sequence

\[0 \to \text{Br}(N)\{p\} \xrightarrow{i} \text{Br}(\widehat{E})\{p\} \xrightarrow{\partial} X(N)\{p\} \to 0. \]

The first map preserves indices of algebras. For a central simple algebra C over N with $C \in \text{Br}(N)\{p\}$ let \widehat{C} be a central simple algebra over \widehat{E} of the same degree representing the image of $[C]$ under i. For example, if $[C] = \chi + (u)$ for some $\chi \in X(N)\{p\}$ and a unit $u \in \widehat{E}$, then $[\widehat{C}] = \widehat{\chi} + (u)$.

The choice of a prime element π in \widehat{E} yields a splitting of the sequence $\mathbb{[10]}$ by sending a character χ to the class of the cyclic algebra $\widehat{\chi} + (\pi)$. Thus for every central simple algebra A over \widehat{E} we can write

$[A] = [C] + ([\widehat{\chi}] + (\pi))$

in $\text{Br}(\widehat{E})$ for a unique $[C] \in \text{Br}(N)\{p\}$ and $\chi = \partial([A])$. Moreover (see $\mathbb{[6, Th. 5.15(a)]}$ or $\mathbb{[10, Prop. 2.4]}$),

\[\text{ind}(A) = \text{ord}(\chi) \cdot \text{ind}(C_{N(\chi)}). \]

Let E'/E be a finite field extension and v' a discrete valuation on E' extending v with residue field N'. Then for any $[A] \in \text{Br}(E)\{p\}$ one has

\[\partial_{v'}([A_{E'}]) = e \cdot \partial_v([A])_{N'}. \]

where e is the ramification index of E'/E $\mathbb{[3, Prop. 8.2]}$.

4.2. The functors \mathcal{F}_1 and \mathcal{F}_2. We define the functors \mathcal{F}_1 and \mathcal{F}_2 from the category Fields/F of field extensions of F to the category Sets as follows. Let E/F be a field extension. Then $\mathcal{F}_1(E)$ is the set of isomorphism classes of central simple E-algebras of degree p^2. Thus, $d_{p}(\mathcal{F}_1) = d_{p}(\text{PGL}_F(p^2))$.

Let $\mathcal{S}_2(E)$ be the class of pairs (B, K), where B is a central simple algebra of degree p^2 over E and K is a cyclic étale E-algebra of degree p such that $\text{ind}(B_K) \leq p$; i.e., K is isomorphic to an E-subalgebra of B. We say that the pairs (B_1, K_1) and (B_2, K_2) are equivalent if $K_1 \simeq K_2$ over E and $[B_1] - [B_2] \in \text{Br}(K_1/E) = \mathbb{Z}/p\mathbb{Z}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let $\text{Br}(K_2/E)$. Let $\mathcal{F}_2(E)$ be the set of equivalence classes in $\mathcal{S}_2(E)$. We write $[B, K]$ for the class in $\mathcal{F}_2(E)$ of a pair (B, K).

Let $(B, K) \in \mathcal{S}_2(E)$ with K a field and let $\chi \in X(E)$ be a character (of order p) such that $K = E(\chi)$ (see Section 2.2). As $\text{ind}(B_K) \leq p$, there is a central simple algebra C over the function field $E(y)$ (y is a variable) of degree p^2 such that

$$[C] = [B_{E(y)}] + (\chi_{E(y)} \cup (y))$$

in $\text{Br}(E(y))$.

Consider the following condition (\ast) on the pair (B, K) in $\mathcal{S}_2(E)$ and the character χ:

For any finite field extension N/E of degree prime to p, the class of the algebra B_N in $\text{Br}(N)$ cannot be written in the form $[B_N] = \rho \cup (s)$ for some $s \in N^\times$ and a character $\rho \in X(N)$ of order p^2 such that $p \cdot \rho$ is a multiple of χ_N.

Proposition 4.1. Let $\chi \in X(E)$ be a character of prime order p, $K = E(\chi)$, and let B be a central simple algebra of degree p^2 over E such that $(B, K) \in \mathcal{S}_2(E)$ and (B, K) together with χ satisfy the condition (\ast). Then

$$\text{ed}^p_1([C]) \geq \text{ed}^p_2([B, K]) + 1$$

for the algebra C defined by (13).

Proof. Let $M/E(y)$ be a finite field extension of degree prime to p, $M_0 \subset M$ a subfield over F and $[C_0] \in \mathcal{F}_1(M_0)$ such that

$$[(C_0)_M] = [C_M]$$

in $\mathcal{F}_1(M)$ and $\text{ed}^p_1([C]) = \text{tr. deg.}_F(M_0)$.

We have $[C] \in \mathcal{F}_1(E(y))$ and $\partial([C]) = \chi$, where ∂ is taken with respect to the discrete valuation ν on $E(y)$ associated to y (see Section 4.1). We extend ν to a discrete valuation ν' on M with ramification index e' and inertia degree both prime to p (see [1] Lemma 1.1). Thus, the residue field N of ν' is a finite extension of E of degree prime to p. Let v_0 be the restriction of ν' to M_0 and N_0 its residue field. As $[N : E]$ is not divisible by p, it follows from (12) that $\partial([C_M]) = e' \cdot \chi_N \neq 0$. Hence the algebra C_M is ramified; i.e., the class of C_M does not belong to the image of the map $\text{Br}(O) \to \text{Br}(M)$, where O is the valuation ring of v'. It follows that C_0 is also ramified; therefore v_0 is nontrivial and hence v_0 is a discrete valuation on M_0.

Let $\chi_0 = \partial([C_0]) \in X(N_0\{p\})$ and $K_0 = N_0(\chi_0)$. Choose a prime element π_0 in M_0 and write

$$[(C_0)_{\widehat{M}_0}] = [\widehat{B}_0] + (\widehat{\chi}_0 \cup (\pi_0))$$

in $\text{Br}(\widehat{M}_0)$, where B_0 is a central simple algebra over N_0 (see Section 4.1). By (11),

$$\text{ind}(C_0) = \text{ord}(\chi_0) \cdot \text{ind}(B_0)_{K_0}.$$

Let e be the ramification index of M/M_0 and let π be a prime element in M. Write $\pi_0 = u \pi^e$ and $y = v \pi^e$ with u and v units in M.

It follows from (14) and (12) that

$$e' \cdot \chi_N = \partial([C_M]) = \partial([C_0]_{M}) = e \cdot \partial(\chi_0)_{N} = e \cdot (\chi_0)_{N}.$$

Recall that e' is relatively prime to p. It follows that χ_N is a multiple of $(\chi_0)_{N}$.

In particular, $\text{ord}(\chi_0)_{N}$ is divisible by p.
It follows from (14), (15) and (17) that
\begin{equation}
[(\hat{B}_0)_N] + ((\hat{\chi}_0)_N \cup (u)) = [\hat{B}_N] + (\hat{\chi}_N \cup (\bar{v}))
\end{equation}
in $\text{Br}(\hat{M})$; hence
\begin{equation}
[(B_0)_N] + ((\chi_0)_N \cup (\bar{u})) = [B_N] + (\chi_N \cup (\bar{v}))
\end{equation}
in $\text{Br}(N)$.

Since $\text{ind}(C_0) \leq p^2$, it follows from (11) and (16) that $\text{ord}(\chi_0)$ divides p^2.

Case 1. $\text{ord}(\chi_0)_N = p^2$. By (16), $\text{ind}(B_0)_{K_0} = 1$, i.e., B_0 is split over K_0; hence $[B_0] = \chi_0 \cup (s_0)$ for some $s_0 \in N^\times$. It follows from (19) that $[B_N] = (\chi_0)_N \cup (s)$ for some $s \in N^\times$. Since $\text{ord}(\chi_0)_N = p^2$, the character $p \cdot (\chi_0)_N$ is a multiple of χ_N by (17). Hence (B, K) and χ do not satisfy the condition (*), a contradiction.

Case 2. $\text{ord}(\chi_0)_N = p$. As $p\eta_0$ is split by N, we can view the field $N_1 := N_0(p\eta_0)$ as a subfield of N. Replacing N_0 by N_1 and B_0 by $(B_0)_{N_1}$, we may assume that η_0 is of order p in $X(N_0)$. The characters χ_N and $(\chi_0)_N$ generate the same subgroup in $X(N)$. It follows that
\begin{equation}
K_0 \otimes_{N_0} N \simeq N((\chi_0)_N) = N(\chi_N) \simeq K \otimes_{E} N.
\end{equation}

By (19), we have $\text{ind}(B_0)_{K_0} \leq p$. Therefore, we may assume that $\deg(B_0) = p^2$ and hence $(B_0, K_0) \in \mathcal{S}_2(N_0)$. It follows from (19) that
\begin{equation}
[B_N] - [(B_0)_N] \in \text{Br}(K \otimes_{E} N/N).
\end{equation}

By (20), the pairs $(B_N, K \otimes_{E} N)$ and $((B_0)_N, K_0 \otimes_{N_0} N) = (B_0, K_0)_N$ are equivalent in $\mathcal{S}_2(N)$. It follows that the class of $[B, K]$ in $\mathcal{F}_2(E)$ is p-defined over N_0; therefore,
\begin{equation}
\text{ed}^{\mathcal{F}_1}_p([C]) = \text{tr. deg}_p(M_0) \geq \text{tr. deg}_p(N_0) + 1 \geq \text{ed}^{\mathcal{F}_2}_p([B, K]) + 1.
\end{equation}

Remark 4.2. The statement of Proposition 4.1 is no longer true if we don’t assume the condition (*). Indeed, let $[B_N] = \rho \cup (s)$ for a finite field extension N/E of degree prime to p, some $s \in N^\times$ and a character $\rho \in X(N)$ of order p^2 such that $p \cdot \rho$ is a multiple of χ_N. Then $[C_{N(y)}] = \rho_{N(y)} \cup (sy^p)$ for some y; i.e., the algebra $C_{N(y)}$ is also cyclic. With an appropriate choice of ρ and s (and the assumption that the base field contains a primitive root of unity of degree p^2) both classes $[B, K]$ and $[C]$ have essential p-dimension 2.

4.3. The functor \mathcal{F}_3. Let E/F be a field extension and let $\mathcal{S}_3(E)$ be the class of pairs (A, L), where A is a central simple algebra of degree p^2 over E and L is a bicyclic étale E-algebra of dimension p^2 such that L splits A; i.e., L is isomorphic to an E-subalgebra of A, or, equivalently, $[A] \in \text{Br}(L/E)$. We say that the pairs (A_1, L_1) and (A_2, L_2) in $\mathcal{S}_3(E)$ are equivalent if $L_1 \simeq L_2$ and $[A_1] - [A_2] \in \text{Br}_{\text{dec}}(L_1/E) = \text{Br}_{\text{dec}}(L_2/E)$ (see Section 4.2). Let $\mathcal{F}_3(E)$ be the set of equivalence classes in $\mathcal{S}_3(E)$. We write $[A, L]$ for the equivalence class of (A, L) in $\mathcal{F}_3(E)$.

Let L be a bicyclic étale E-algebra of dimension p^2. We view the factor group $\text{Br}(L/E)/\text{Br}_{\text{dec}}(L/E)$ as a subset of $\mathcal{F}_3(E)$ identifying the class of an algebra A with $[A, L]$.

Let χ and η in $X(F)$ be linearly independent characters of order p and let E/F be a field extension such that χ_E and η_E are linearly independent in $X(E)$. Let $(A, L) \in \mathcal{S}_3(E)$ and set $K = E(\chi)$ and $L = E(\chi, \eta) := K(\eta)$. As A is split by L,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
there is a central simple algebra B over the function field $E(x)$ (x is a variable) of degree p^2 such that

$$[B] = [A_{E(x)}] + (\eta_{E(x)} \cup (x))$$

in $\text{Br}(E(x))$. We have $(B, K(x)) \in S_2(E(x))$.

Proposition 4.3. Let $\chi, \eta \in \mathcal{X}(F)$ be characters of order p, E/F a field extension such that χ_E and η_E are linearly independent in $\mathcal{X}(E)$, $K = E(\chi)$, $L = E(\chi, \eta)$, A a central simple algebra of degree p^2 over E such that $(A, L) \in S_3(E)$. Then

$$\text{ed}_p^F([B, K(x)]) \geq \text{ed}_p^F([A, L]) + 1$$

for the algebra B defined by (21).

Proof. Let $M/E(x)$ be a finite field extension of degree prime to p, $M_0 \subseteq M$ a subfield over F and $[B_0, R_0] \in F_2(M_0)$ such that $\text{ed}_p^F([B, K(x)]) = \text{tr.deg}_F(M_0)$ and

$$[B_0, R_0]_M = [B, K(x)]_M$$

in $F_2(M)$. The last equality means that $R := K(x) \otimes_{E(x)} M \simeq R_0 \otimes_{M_0} M$ and

$$[B_M] = ([B_0]_M) + (\chi_M \cup (f))$$

in $\text{Br}(M)$ for some $f \in M^\times$. Hence there is a character $\rho \in \mathcal{X}(M_0)$ such that $R_0 \simeq M_0(\rho)$ and $\rho_M = \chi_M$. Therefore, we can view the field $M_1 := M_0(\rho - \chi_{M_0})$ as a subfield of M. Replacing M_0 by M_1 and $[B_0, R_0]_M$ by $[B_0, R_0]_{M_1}$, we may assume that $\rho = \chi_{M_0}$, i.e., $R_0 = M_0(\chi)$. We have $\partial([B]) = \eta$, where ∂ is taken with respect to the discrete valuation v on $E(x)$ associated to x. We extend the discrete valuation v on $E(x)$ to a discrete valuation v' on M with ramification index e' and inertia degree both prime to p (see [21 Lemma 1.1]). Thus, the residue field N of v' is a finite extension of E of degree prime to p. Let v_0 be the restriction of v' to M_0 and N_0 its residue field. As $[N : E]$ is not divisible by p, it follows from (12) that $\partial([B_M]) = e' \cdot \eta_N \neq 0$. Hence the algebra B_M is ramified. It follows from (22) and (12) that

$$e' \cdot \eta_N = \partial([B_M]) = \partial(([B_0]_M)) + k \cdot \chi_N,$$

where $k = v'(f)$. Note that the characters χ_N and η_N are linearly independent in $\mathcal{X}(N)$ since $[N : E]$ is not divisible by p. It follows that $\partial(([B_0]_M)) \neq 0$ and then B_0 is ramified; therefore v_0 is nontrivial and hence v_0 is a discrete valuation on M_0.

As $R = KM$, the valuation v' on M extends to a discrete valuation on R such that R/M is unramified.

Let $\eta_0 = \partial([B_0]) \in \mathcal{X}(N_0)\{p\}$. Choose a prime element π_0 in M_0 and write

$$([B_0]_{\tilde{M}_0}) = [\tilde{A}_0] + ([\eta_0] \cup (\pi_0))$$

in $\text{Br}(\tilde{M}_0)$, where A_0 is a central simple algebra over N_0. By (11),

$$\text{ind}(B_0) = \text{ord}(\eta_0) \cdot \text{ind}(A_0)_{N_0(\eta_0)}.$$

Let e be the ramification index of M/M_0 and let π be a prime element in M. Write $\pi = u\pi^e$, $x = v\pi^e$ and $f = w\pi^k$ with u, v and w units in M. It follows from (23) that

$$e' \cdot \eta_N = e \cdot (\eta_0)_N + k \cdot \chi_N.$$
As e' is relatively prime to p, η_N belongs to the subgroup of $X(N)$ generated by $(\eta_0)_N$ and χ_N, and $(\eta_0)_N \neq 0$ since χ_N and η_N are linearly independent. In particular, p divides $\text{ord}(\eta_0)_N$.

It follows from (22), (24) and (20) that

\[(A_0)_N + (\hat{\eta}_N \cup \hat{\hat{v}}) = \hat{A}_N + (\hat{\eta}_N \cup \hat{v})\]

in $\text{Br}(\hat{M})$; hence

\[(A_0)_N + (\hat{\eta}_N \cup \hat{\hat{v}}) = (A_0)_N + (\hat{\eta}_N \cup \hat{v})\]

in $\text{Br}(N)$.

Since $\text{ind}(B_0) \leq p^2$, it follows from (24) that $\text{ord}(\eta_0) \leq p^2$.

Case 1. $\text{ord}(\eta_0)_N = \text{ord}(\eta_0) = p^2$. It follows from (20) that e is divisible by p. By (25), A_0 is split over $N_0(\eta_0)$; hence $[A_0] = \eta_0 \cup (\bar{s}_0)$ for some $s_0 \in M_0^*$. It follows from (21) that $[B_0]_{\hat{M}_0} = \hat{\eta}_0 \cup (\bar{s}_0 \pi_0)$ in $\text{Br}(\hat{M}_0)$; hence $[B_0]_{\hat{M}_0(\chi)} = \hat{\eta}_0 N_0(\chi) \cup (\bar{s}_0 \pi_0)$ in $\text{Br}(\hat{M}_0(\chi))$. As

\[\text{ind}(B_0)_{\hat{M}_0(\chi)} \leq \text{ind}(B_0)_{M_0(\chi)} = \text{ind}(B_0)_{R_0} \leq p,\]

the order of $(\eta_0)_{N_0(\chi)}$ is at most p, i.e., $p \eta_0$ is a multiple of χ_{N_0}. As e is divisible by p, it follows from (20) that η_N is a multiple of χ_N, a contradiction.

Case 2. $\text{ord}(\eta_0)_N = p$. It follows from (20) that $(e, p) = 1$ and $(\eta_0)_N$ belongs to the subgroup generated by χ_N and η_N. Moreover,

\[(\chi_N, (\eta_0)_N) = (\chi_N, \eta_N)\]

in $X(N)$. Let $K_0 = N_0(\chi)$. It follows from (24) that

\[[B_0]_{R_0} = [(A_0)_{K_0}] + (\hat{\eta}_0)_{K_0} \cup (\pi_0)\]

As $(B_0, R_0) \in S_2(M_0)$, we have $\text{ind}(B_0)_{R_0} \leq p$. Since η_0 is not a multiple of χ_{N_0}, the character $(\eta_0)_{K_0}$ is nontrivial, and it follows from (11) that A_0 is split by $K_0(\eta_0)$.

As $p \eta_0$ is split by N, we can view the field $N_1 := N_0(p \eta_0)$ as a subfield of N. Replacing N_0 by N_1 and A_0 by $(A_0)_{N_1}$, we may assume that η_0 is of order p in $X(N_0)$.

Let $L_0 = N_0(\chi, \eta_0) = K_0(\eta_0)$. Then

\[(L_0 \otimes_{N_0} N) = N(\chi, \eta_0) = N(\chi, \eta) = L \otimes_E N\]

is a bicyclic field extension of degree p^2 and hence so is the extension L_0/N_0. In particular, χ_{N_0} and η_0 generate a subgroup of order p^2 in $X(N_0)$.

As A_0 is split by L_0, we may assume that $\text{deg}(A_0) = p^2$ and hence $(A_0, L_0) \in S_3(N_0)$.

It follows from (20) that $[A_N] - [(A_0)_N] \in \text{Br}_{dec}(L \otimes_E N/N)$. By (20), the pairs $(A_N, L \otimes_E N)$ and $(A_0)_N, L_0 \otimes_{N_0} N) = (A_0, L_0)_N$ are equivalent in $S_3(N)$. Then the class $[A, L]$ in $F_3(E)$ is p-defined over N_0; therefore,

\[\text{ed}^{T_2}_p([B, K(x)]) = \text{tr. deg}_F(M_0) \geq \text{tr. deg}_F(N_0) + 1 \geq \text{ed}^{T_2}_p([A, L]) + 1.\]
Let \(L/F \) be a bicyclic field extension of degree \(p^2 \). Write \(T \) for the torus over \(F \) of norm 1 elements for the field extension \(L/F \). Let \(t \in T(F(T)) \) be the generic point and let \([A, L(T)] \) be the corresponding element in \(\mathcal{F}_3(F(T)) \) via the isomorphism between \(T(F(T))/R \) and \(\operatorname{Br}(L(T)/F(T))/\operatorname{Br}_{dec}(L(T)/F(T)) \) in Proposition 2.3.

Proposition 4.4. \(\operatorname{ed}_{p^3}([A, L(T)]) \geq p^2 - 1 \).

Proof. Let \(M/F(T) \) be a field extension of degree prime to \(p \), \(M_0 \subset M \) a subfield over \(F \) and \([A_0, L_0] \in \mathcal{F}_3(M_0) \) such that \([A_0, L_0]_M = [A, L(T)]_M \). We need to prove that \(\operatorname{tr.deg}_F(M_0) \geq p^2 - 1 \). Set \(LM = L \otimes_F M \). As \(L_0 \otimes_{M_0} M \simeq LM \), we may assume that \(L_0 \subset LM \).

Let \(T_0 \) be the torus over \(M_0 \) of norm 1 elements for the extension \(L_0/M_0 \). We have \((T_0)_M \simeq T_M \). Consider the commutative diagram

\[
\begin{array}{ccc}
T_0(M_0)/R & \longrightarrow & T(M)/R \\
\downarrow & & \downarrow \\
\mathcal{F}_3(M_0) & \longrightarrow & \mathcal{F}_3(M),
\end{array}
\]

where the vertical injective maps are given by the isomorphisms in Proposition 2.3. The pair \([A_0, L_0]\) belongs to the image of the left vertical map in the diagram. Hence there exists an element \(t_0 \in T_0(M_0) \) such that \((t_0)_M \) in \(T_0(M) = T(M) \) is \(R \)-equivalent to \(t_M \). We have \(\operatorname{deg}(t) = 1 \); therefore, \(\operatorname{deg}(t_M) \) is not divisible by \(p \) as \([M : F(T)]\) is prime to \(p \). By Theorem 3.10 \(\operatorname{deg}((t_0)_M) = \operatorname{deg}(t_M) \) modulo \(p \); hence \(\operatorname{deg}((t_0)_M) \neq 0 \). It follows that \((t_0)_M\), viewed as a morphism \(\operatorname{Spec}(M) \to T \), is dominant. Therefore, there is a field homomorphism \(F(T) \to M \) over \(F \) taking \(t \) to \((t_0)_M\). The elements \(\rho(t) \) over all \(\rho \in G := \operatorname{Gal}(L/F) \) generate the field \(L(T) \) over \(L \). Hence the elements \(\rho(t)_M \) generate a subfield in \(LM \) over \(L \) of the transcendence degree \(\operatorname{dim}(T) = p^2 - 1 \). As \(t_0 \in L_0 \) and \(L_0 \) is normal over \(M_0 \) and hence is \(G \)-invariant, the elements \(\rho(t_0) \) generate a subfield in \(L_0 \) over \(F \) of the transcendence degree \(p^2 - 1 \). It follows that \(\operatorname{tr.deg}_F(L_0) \geq p^2 - 1 \); hence \(\operatorname{tr.deg}_F(M_0) \geq p^2 - 1 \).

Remark 4.5. Let \(L \) be a bicyclic field extension of degree \(p^2 \) of a field \(F \) of arbitrary characteristic and let \(T = \mathcal{R}_{L/F}^1(\mathbb{G}_m, L) \). A similar argument as the one in the proof of Proposition 4.4 shows that \(\operatorname{ed}_p(T/R) = p^2 - 1 \), where \(T/R \) is the functor taking a field \(E \) to \(T(E)/R \).

4.4. The main theorem.

Theorem 4.6. Let \(p \) be a prime integer and \(F \) a field of characteristic different from \(p \). Then

\[
\operatorname{ed}_p(\mathbb{PGL}(p^2)) = p^2 + 1.
\]

Proof. Recall that \(\operatorname{ed}_p(\mathbb{PGL}(p^2)) = \operatorname{ed}_p(\mathcal{F}_1) \). First we prove the inequality \(\operatorname{ed}_p(\mathcal{F}_1) \geq p^2 + 1 \). We may replace \(F \) by any field extension. In particular, we may assume that there are linearly independent characters \(\chi, \eta \in X(F) \) of order \(p \); hence \(L := F(\chi, \eta)/F \) is a bicyclic field extension of degree \(p^2 \). Set \(K = F(\chi) \) and \(K' = F(\eta) \). Let \(T \) be the norm 1 torus for the extension \(L/F \) and set \(E := F(T) \). Let \([A, LE]\) be the element of \(\mathcal{F}_3(E) \) corresponding to the generic point \(t \in T(E) \) via the isomorphism in Proposition 2.3. Consider the pair \((B, KE(x)) \in S_2(E(x)) \)
with
\[(30) \quad \begin{aligned}
[B] &= [A_{E(x)}] + (\eta_{E(x)} \cup (x)) \\
[C] &= [B_{E(x,y)}] + (\chi_{E(x,y)} \cup (y))
\end{aligned}
\]
in $\text{Br}(E(x,y))$. We claim that the pair $(B, KE(x))$ in $S_2(E(x))$ and the character $\chi_{E(x)}$ satisfy the condition (\ast). Let $N/E(x)$ be a finite field extension of degree prime to p with $[B_N] = \rho \cup (s)$ in $\text{Br}(N)$ for some $s \in N^\times$ and a character $\rho \in X(N)$ of order p^2 such that $p \cdot \rho$ is a multiple of χ_N. Extend the discrete valuation of the field $F(x)$ associated to x to a discrete valuation v on N with the ramification index e' prime to p and residue field P of degree prime to p over E. As $p \cdot \rho$ is a multiple of χ_N and the extension $\hat{N}(\chi)/\hat{N}$ is unramified, the ramification index e of $\hat{N}(\rho)/\hat{N}$ is either 1 or p.

Case 1. $e = 1$. We have $\rho_{\hat{N}} = \hat{\mu}$ for a character $\mu \in X(P)$ of order p^2. By (30), we have
\[e' \eta_P = \partial([B_{\hat{N}}]) = v(s)\mu_P.\]
As ρ_P is of order p^2, the character $p \cdot \mu_P$ is a multiple of χ_N. On the other hand, $p \cdot \mu$ is a multiple of χ_P by assumption; i.e., χ_P and η_P are linearly dependent, a contradiction.

Case 2. $e = p$. It follows that P contains primitive roots of unity of degree p (see [9]), so we can identify $pX(P)$ with P^s/P^{sp}. Let π be a prime element in N and ν the corresponding character of order p in $X(N)$. We can write $\rho = \hat{\mu} + lv$ for some character $\mu \in X(P)$ of order p^2 and an integer l prime to p. Noting that $\chi_N = p \cdot \rho = p \cdot \hat{\mu}$, we have $p \cdot \mu = \chi_P$.

Write $s = u\pi^j$ for some integer u in N. Then
\[(31) \quad \begin{aligned}
[B_N] &= \rho \cup (s) = (\hat{\mu} + lv) \cup (u\pi^j) = \hat{\mu} \cup (u) + (j\hat{\mu}) \cup (\pi) + \nu \cup (w),
\end{aligned}\]
where $w = (-1)^j\eta_\pi^j$. Let ϵ be the character in $X(P)$ of exponent p corresponding to \hat{w}. As $\nu \cup (w) + \epsilon \cup (\pi) = 0$, it follows from (30) that
\[e' \eta_P = \partial([B_{\hat{N}}]) = j\mu - \epsilon.
\]
Since μ is of order p^2, we have $j = pk$ for some integer k. Hence $\epsilon = kp \cdot \mu - e' \eta_P = k\chi_P - e' \eta_P$. Note that the characters χ and η are defined over F. It follows that the classes of \hat{w} and \hat{u} belong to the image of F^s/F^{sp} in P^s/P^{sp}. By (30) and (31),
\[p[A_P] = p(\mu \cup (\hat{u})) = \chi_P \cup (\hat{u}) \in \text{Im}(\text{Br}(F) \rightarrow \text{Br}(N)).\]
Taking the corestriction for the extension P/E of degree prime to p, we see that the class $p[A]$ belongs to the image of the map $\text{Br}(F) \rightarrow \text{Br}(E)$. This contradicts Corollary (2.3). Thus, we have checked the condition (\ast).

By Propositions (4.1), (4.3) and (4.4),
\[\begin{aligned}
ed_p(\text{PGL}_F(p^2)) &= ed_p(F_1) \geq ed_p^p([C]) \geq ed_p^p([B, KE(x)]) + 1 \\
&\geq ed_p^p([A, LE]) + 2 \geq (p^2 - 1) + 2 = p^2 + 1.
\end{aligned}\]

We shall show that $ed_p(F) \leq p^2 + 1$. As mentioned in the introduction, this was shown in [9, Cor. 3.10(a)]. For completeness, we give the argument here.
Let $\mathcal{F}_1(E)$ be the set of isomorphism classes of central simple E-algebras of degree p^2 that are crossed products with the group $\mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$. So \mathcal{F}_1 is a subfunctor of \mathcal{F}_1. By [8 Th. 1.2], for every $[A] \in \mathcal{F}_1(E)$ there is a finite field extension E'/E of degree prime to p such that $[A_{E'}] \in \mathcal{F}_1(E')$. Hence the inclusion of \mathcal{F}_1' into \mathcal{F}_1 is p-surjective (see [11]). It follows that $\text{ed}_p(\mathcal{F}_1') \leq \text{ed}_p(\mathcal{F}_1)$ [11 Prop. 1.3]. So it suffices to show that $\text{ed}(\mathcal{F}_1') \leq p^2 + 1$.

Let E/F be a field extension and $[A] \in \mathcal{F}_1(E)$. Then $[A] \in \text{Br}(L/E)$ for a bicyclic field extension L/F of degree p^2 with Galois group G generated by σ and τ. The exact sequence (2) yields an epimorphism

$$\text{Hom}_G(M, L^\times) \to \text{Br}(L/E).$$

Choose a G-homomorphism $\varphi : M \to L^\times$ corresponding to $[A]$ in $\text{Br}(L/E)$. Since $\text{rank}(M) = p^2 + 1$, the image of φ is contained in L_0, where L_0 is a G-invariant subfield of L with $\text{tr.deg}_F(L_0) \leq p^2 + 1$. Note that G acts faithfully on M. Modifying φ by an element in the image of the map $\text{Hom}_G(A^2, L^\times) \to \text{Hom}_G(M, L^\times)$, we may assume that G acts faithfully on the image of φ and hence on L_0. Thus L_0 is a Galois extension of $E_0 := (L_0)^G$ with Galois group G, and φ defines a central simple E_0-algebra A_0 with $[A_0] \in \text{Br}(L_0/E_0)$ such that $A_0 \otimes_{E_0} E \simeq A$. Thus, A is defined over E_0; hence

$$\text{ed}(\mathcal{F}_1([A])) \leq \text{tr. deg}_F(E_0) = \text{tr. deg}_F(L_0) \leq p^2 + 1. \quad \square$$

References

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90095-1555

E-mail address: merkurev@math.ucla.edu