Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Uniqueness of enhancement for triangulated categories


Authors: Valery A. Lunts and Dmitri O. Orlov
Journal: J. Amer. Math. Soc. 23 (2010), 853-908
MSC (2010): Primary 14F05, 18E30
Published electronically: February 8, 2010
MathSciNet review: 2629991
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper contains general results on the uniqueness of a DG enhancement for triangulated categories. As a consequence we obtain such uniqueness for the unbounded derived categories of quasi-coherent sheaves, for the triangulated categories of perfect complexes, and for the bounded derived categories of coherent sheaves on quasi-projective schemes. If a scheme is projective, then we also prove a strong uniqueness for the triangulated category of perfect complexes and for the bounded derived categories of coherent sheaves. These results directly imply that fully faithful functors from the bounded derived categories of coherent sheaves and the triangulated categories of perfect complexes on projective schemes can be represented by objects on the product.


References [Enhancements On Off] (What's this?)

  • [SGA4] M. Artin, A. Grothendieck, J. L. Verdier, Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. (French) Séminaire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4). Lect. Notes in Math., 269 (1972). MR 0354652 (50:7130)
  • [Ba] M. R. Ballard, Equivalences of derived categories of sheaves on quasi-projective schemes, arXiv:0905.3148.
  • [BN] M. Bökstedt, A. Neeman, Homotopy limits in triangulated categories, Comp. Math., 86 (1993), 2, 209-234. MR 1214458 (94f:18008)
  • [BvB] A. Bondal, M. Van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., 3 (2003), 1-36. MR 1996800 (2004h:18009)
  • [BK] A. Bondal, M. Kapranov, Enhanced triangulated categories, Math. USSR-Sbornik, 70 (1991), 1, 93-107. MR 1055981 (91g:18010)
  • [BLL] A. Bondal, M. Larsen, V. Lunts, Grothendieck ring of pretriangulated categories, Int. Math. Res. Not., 29 (2004), 1461-1495. MR 2051435 (2005d:18014)
  • [Dr] V. Drinfeld, DG quotients of DG categories, J. of Algebra, 272 (2004), 5, 643-691. MR 2028075 (2006e:18018)
  • [ELO1] A. Efimov, V. Lunts, D. Orlov, Deformation theory of objects in homotopy and derived categories I: General theory, Adv. Math., 222 (2009), 2, 359-401. MR 2538013
  • [Ga] P. Gabriel, Des catégories abéliennes, Bull. de la Soc. Math. de France, 90 (1962), 323-448. MR 0232821 (38:1144)
  • [EGA1] A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique, Grundleheren, 166 (1971), Press Univ. France, Springer-Verlag. MR 0432634 (55:5621)
  • [EGA2] A. Grothendieck, Éléments de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): II. Étude globale élémentaire de quelques classes de morphismes, Publ. Math. de l'IHÉS, 8 (1961), 5-222. MR 0217084 (36:177b)
  • [Ha] R. Hartshorne, Residues and Duality, Lect. Notes Math., 20 (1966). MR 0222093 (36:5145)
  • [Hi] V. Hinich, Homological algebra of homotopy algebras, Comm. Algebra, 25 (1997), 10, 3291-3323. MR 1465117 (99b:18017)
  • [IENT] F. Castaño Iglesias, P. Enache, C. Năstăsescu, B. Torrecillas, Gabriel-Popescu type theorems and applications, Bull. Sci. Math., 128 (2004), n.4, 323-332. MR 2052174 (2005e:18015)
  • [KS] M. Kashiwara, P. Shapira, Categories and sheaves, Springer-Verlag (2006). MR 2182076 (2006k:18001)
  • [K1] B. Keller, Deriving DG categories, Ann. Sci. de l'École Norm. Sup., Sér. 4, 27 (1994), 63-102. MR 1258406 (95e:18010)
  • [K2] B. Keller, Derived categories and their uses, Handbook of algebra, 1, North-Holland, Amsterdam, (1996), 671-701. MR 1421815 (98h:18013)
  • [Li] J. Lipman, Lectures on local cohomology and duality, In ``Local Cohomology and Its Applications,'' Lect. Notes in Pure and Applied Math., 226, Marcel Dekker, NY, (2001), 39-89. MR 1888195 (2003b:13027)
  • [Me] C. Menini, Gabriel-Popescu type theorems and graded modules, Perspectives in ring theory (Antwerp, 1987), 239-251, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 233, Kluwer Acad. Publ., Dordrecht, (1988). MR 1048412 (91d:18011)
  • [N1] A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. de l'École Norm. Sup., Sér. 4, 25 (1992), 5, 547-566. MR 1191736 (93k:18015)
  • [N2] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. Amer. Math. Soc., 9 (1996), 205-236. MR 1308405 (96c:18006)
  • [N3] A. Neeman, Triangulated categories, Ann. of Math. Studies, 148, Princeton Univ. Press, (2001). MR 1812507 (2001k:18010)
  • [OSS] C. Okonek, M. Schneider, H. Spindler, Vector bundles on complex projective spaces, Progress in Math., 3. Birkhäuser, Boston, Mass., (1980). MR 561910 (81b:14001)
  • [O1] D. Orlov, Equivalences of derived categories and K3 surfaces, J. Math. Sci., 84 (1997), 5, 1361-1381. MR 1465519 (99a:14054)
  • [O2] D. Orlov, Derived categories of coherent sheaves and equivalences between them, Russian Math. Surveys, 58 (2003), 3, 89-172. MR 1998775 (2004g:14021)
  • [Po] N. Popescu, Abelian categories with Applications to Rings and Modules, Academic Press, L. M. S. Monograph No.3, London, (1973). MR 0340375 (49:5130)
  • [Se] J.-P. Serre, Faisceaux algébriques cohérents, Ann. of Math., 2nd Ser., 61 (1955), 2, 197-278. MR 0068874 (16:953c)
  • [Sp] N. Spaltenstein, Resolution of unbounded complexes, Comp. Math., 65 (1988), 2, 121-154. MR 932640 (89m:18013)
  • [Ta] G. Tabuada, Théorie homotopique des DG-catégories, Thèse de l'Univ. Paris 7 (2007).
  • [To] B. Toën, The homotopy theory of dg-categories and derived Morita theory, Invent. Math., 167 (2007), 3, 615-667. MR 2276263 (2008a:18006)
  • [TT] R. W. Thomason, T. Trobaugh, Higher Algebraic K-Theory of Schemes and of Derived Categories, The Grothendieck Festschrift III, Birhäuser, Boston, Basel, Berlin, (1990), 247-436. MR 1106918 (92f:19001)
  • [Th] R. W. Thomason, The classification of triangulated subcategories, Compositio Math., 105 (1997), 1, 1-27. MR 1436741 (98b:18017)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14F05, 18E30

Retrieve articles in all journals with MSC (2010): 14F05, 18E30


Additional Information

Valery A. Lunts
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email: vlunts@indiana.edu

Dmitri O. Orlov
Affiliation: Steklov Mathematical Institute, 8 Gubkina St., Moscow, Russia
Email: orlov@mi.ras.ru

DOI: http://dx.doi.org/10.1090/S0894-0347-10-00664-8
Keywords: Triangulated categories, DG categories, derived categories of sheaves
Received by editor(s): September 5, 2009
Received by editor(s) in revised form: December 14, 2009
Published electronically: February 8, 2010
Additional Notes: The first author was partially supported by the NSA grant H98230-05-1-0050
The second author was partially supported by grant RFFI 08-01-00297 and grant NSh-1987.2008.1
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.