Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Massey products for elliptic curves of rank $ 1$


Author: Minhyong Kim
Journal: J. Amer. Math. Soc. 23 (2010), 725-747
MSC (2010): Primary 11G05
Published electronically: March 12, 2010
Erratum: J. Amer. Math. Soc. 24 (2011), 281-291
MathSciNet review: 2629986
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For an elliptic curve over $ \mathbb{Q}$ of rank 1, integral $ j$-invariant, and suitable finiteness in the Tate-Shafarevich group, we use the level-two Selmer variety and secondary cohomology products to find explicit analytic defining equations for global integral points inside the set of $ p$-adic points.


References [Enhancements On Off] (What's this?)

  • 1. Bertolini, Massimo; Darmon, Henri, Hida families and rational points on elliptic curves. Invent. Math. 168 (2007), no. 2, 371-431. MR 2289868 (2008c:11076)
  • 2. Besser, Amnon; Furusho, Hidekazu, The double shuffle relations for $ p$-adic multiple zeta values. Primes and knots, 9-29, Contemp. Math., 416, Amer. Math. Soc., Providence, RI, 2006. MR 2276133 (2007i:11090)
  • 3. Bloch, Spencer; Kato, Kazuya, $ L$-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, Vol. I, 333-400, Progr. Math., 86, Birkhäuser Boston, Boston, MA, 1990. MR 1086888 (92g:11063)
  • 4. Coates, John; Kim, Minhyong, Selmer varieties for curves with CM Jacobians. Submitted. Available at the mathematics archive, arXiv:0810.3354 .
  • 5. Deligne, Pierre, Le groupe fondamental de la droite projective moins trois points. Galois groups over $ \mathbb{Q}$ (Berkeley, CA, 1987), 79-297, Math. Sci. Res. Inst. Publ., 16, Springer, New York, 1989. MR 1012168 (90m:14016)
  • 6. Deligne, Pierre, Équations différentielles à points singuliers réguliers. (French) Lecture Notes in Mathematics, Vol. 163. Springer-Verlag, Berlin-New York, 1970. MR 0417174 (54:5232)
  • 7. Deninger, Christopher, Higher order operations in Deligne cohomology. Invent. Math. 120 (1995), no. 2, 289-315. MR 1329043 (96f:11085)
  • 8. Fontaine, Jean-Marc, Sur certains types de représentations $ p$-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate. Ann. of Math. (2) 115 (1982), no. 3, 529-577. MR 657238 (84d:14010)
  • 9. Goldman, William M.; Millson, John J., The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Etudes Sci. Publ. Math. No. 67 (1988), 43-96. MR 972343 (90b:32041)
  • 10. Furusho, Hidekazu, $ p$-adic multiple zeta values. I. $ p$-adic multiple polylogarithms and the $ p$-adic KZ equation. Invent. Math. 155 (2004), no. 2, 253-286. MR 2031428 (2005b:11095)
  • 11. Hain, Richard M., The de Rham homotopy theory of complex algebraic varieties. I. $ K$-Theory 1 (1987), no. 3, 271-324. MR 908993 (88h:14029)
  • 12. Hain, Richard M., Iterated Integrals and Algebraic Cycles: Examples and Prospects, Contemporary Trends in Algebraic Geometry and Algebraic Topology, Nankai Tracts in Mathematics, vol. 5, World Scientific, 2002. MR 1945356 (2004a:14009)
  • 13. Hain, Richard M., Periods of Limit Mixed Hodge Structures, in CDM 2002: Current Developments in Mathematics in Honor of Wilfried Schmid and George Lusztig, edited by David Jerison, George Lustig, Barry Mazur, Tom Mrowka, Wilfried Schmid, Richard Stanley and S.-T. Yau (2003), International Press. MR 2059020 (2005e:14015)
  • 14. Hain, Richard M.; Zucker, Steven, Unipotent variations of mixed Hodge structure. Invent. Math. 88 (1987), no. 1, 83-124. MR 877008 (88i:32035)
  • 15. Kato, Kazuya, Lectures on the approach to Iwasawa theory for Hasse-Weil $ L$-functions via $ B_{\rm dR}$. I. Arithmetic algebraic geometry (Trento, 1991), 50-163, Lecture Notes in Math., 1553, Springer, Berlin, 1993. MR 1338860 (96f:11067)
  • 16. Kim, Minhyong, The motivic fundamental group of $ \mathbb{P}^1\setminus \{0,1,\infty\}$ and the theorem of Siegel. Invent. Math. 161 (2005), no. 3, 629-656. MR 2181717 (2006k:11119)
  • 17. Kim, Minhyong, The unipotent Albanese map and Selmer varieties for curves. Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, pp. 89-133. (Proceedings of special semester on arithmetic geometry, Fall, 2006.) MR 2512779
  • 18. Kim, Minhyong, Remark on fundamental groups and effective Diophantine methods for hyperbolic curves. To be published in Serge Lang memorial volume. Available at mathematics archive, arXiv:0708.1115.
  • 19. Kim, Minhyong, $ p$-adic $ L$-functions and Selmer varieties associated to elliptic curves with complex multiplication. Annals of Math. (to be published). Available at mathematics archive: arXiv:0710.5290 (math.AG)
  • 20. Kim, Minhyong, and Tamagawa, Akio, The $ l$-component of the unipotent Albanese map. Math. Ann. 340 (2008), no. 1, 223-235. MR 2349775 (2009a:11132)
  • 21. Kim, Minhyong; Hain, Richard M., A de Rham-Witt approach to crystalline rational homotopy theory. Compos. Math. 140 (2004), no. 5, 1245-1276. MR 2081156 (2005g:14050)
  • 22. Kolyvagin, Victor A., On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves. Proceedings of the International Congress of Mathematicians, Vols. I, II (Kyoto, 1990), 429-436, Math. Soc. Japan, Tokyo, 1991. MR 1159231 (93c:11046)
  • 23. Navarro Aznar, V., Sur la théorie de Hodge-Deligne. Invent. Math. 90 (1987), no. 1, 11-76. MR 906579 (88j:32037)
  • 24. Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay, Cohomology of number fields. Second edition. Grundlehren der Mathematischen Wissenschaften, 323. Springer-Verlag, Berlin, 2008. xvi+825 pp. MR 2392026 (2008m:11223)
  • 25. Olsson, Martin, Towards non-abelian $ p$-adic Hodge theory in the good reduction case. Preprint. Available at http://math.berkeley.edu/˜molsson/.
  • 26. Olsson, Martin, The bar construction and affine stacks. Preprint. Available at http://math.berkeley.edu/˜molsson/.
  • 27. Sharifi, Romyar T., Massey products and ideal class groups. J. Reine Angew. Math. 603 (2007), 1-33. MR 2312552 (2008e:11136)
  • 28. Wojtkowiak, Zdzislaw, Cosimplicial objects in algebraic geometry. Algebraic $ K$-theory and algebraic topology (Lake Louise, AB, 1991), 287-327, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 407, Kluwer Acad. Publ., Dordrecht, 1993. MR 1367304 (96m:14025)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11G05

Retrieve articles in all journals with MSC (2010): 11G05


Additional Information

Minhyong Kim
Affiliation: Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom and The Korea Institute for Advanced Study, Hoegiro 87, Dongdaemun-gu, Seoul 130-722, Korea

DOI: https://doi.org/10.1090/S0894-0347-10-00665-X
Keywords: Elliptic curve, Selmer variety, Massey product
Received by editor(s): February 24, 2009
Received by editor(s) in revised form: January 3, 2010
Published electronically: March 12, 2010
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.