Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 

 

Integral models for Shimura varieties of abelian type


Author: Mark Kisin
Journal: J. Amer. Math. Soc. 23 (2010), 967-1012
MSC (2010): Primary 11G18; Secondary 14G35
Published electronically: April 21, 2010
MathSciNet review: 2669706
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct smooth integral models of Shimura varieties of abelian type at primes where the level structure is hyperspecial.


References [Enhancements On Off] (What's this?)

  • [Bl] D. Blasius, A $ p$-adic property of Hodge classes on abelian varieties, Motives (Seattle 1991), 293-308, Proc. Sympos. Pure Math. 55, Part 2, Amer. Math. Soc., pp. 293-308, 1994. MR 1265557 (95j:14022)
  • [BO] P. Berthelot, A. Ogus, $ F$-isocrystals and de Rham cohomology. I, Invent. Math. 72 (1983), 159-199. MR 700767 (85e:14025)
  • [Br] C. Breuil, Schémas en groupes et corps des normes (unpublished), 1998, 13 pages.
  • [BT] F. Bruhat, J. Tits, Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée, Pub. Math. IHES 60 (1984), 197-376. MR 756316 (86c:20042)
  • [CS] J.-L. Colliot-Thélène, J.-J. Sansuc, Fibrés quadratiques et composantes connexes réelles, Math. Ann. 244 (1979), 105-134. MR 550842 (81c:14010)
  • [Ch] C. Chevalley, Deux théorèmes d'arithmétique, J. Math. Soc. Japan 3 (1951), 36-44. MR 0044570 (13:440a)
  • [CSu] J.-L. Colliot-Thélène, V. Suresh, Quelques questions d'approximation faible pour les tores algébriques, Ann. Inst. Fourier 57 (2007), 273-288. MR 2316239 (2008b:11047)
  • [De 1] P. Deligne, Travaux de Shimura, Exp. 389, Séminaire Bourbaki (1970/1971), Lecture Notes in Math. 244, Springer, pp. 123-165, 1971. MR 0498581 (58:16675)
  • [De 2] P. Deligne, Hodge cycles on abelian varieties, Hodge cycles, motives, and Shimura varieties, Lecture Notes in Math. 900, pp. 9-100, Springer-Verlag, 1982. MR 0654325 (84m:14046)
  • [De 3] P. Deligne, Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques, Automorphic forms, representations and $ L$-functions (Corvallis 1977), Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc., pp. 247-289, 1979. MR 546620 (81i:10032)
  • [De 4] P. Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Math. 163, Springer, 1970. MR 0417174 (54:5232)
  • [DG] M. Demazure, A. Grothendieck, Schémas en groupes I,II,III, Lecture Notes in Math. 151-153, Springer, 1962-1970. MR 0274458 (43:223a); MR 0274459 (43:223b); MR 0274460 (43:223c)
  • [Fa] G. Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc. 12 (1999), 117-144. MR 1618483 (99e:14022)
  • [FC] G. Faltings, C.-L. Chai, Degeneration of Abelian varieties, Ergeb. der Math. 22, Springer, 1990. MR 1083353 (92d:14036)
  • [Fo] J.-M. Fontaine, Représentations $ p$-adiques des corps locaux, Grothendieck Festschrift II, Prog. Math. 87, Birkhäuser, pp. 249-309, 1991. MR 1106901 (92i:11125)
  • [GRR] A. Grothendieck, M. Raynaud, D. Rim, Groupes de monodromie en géométrie algébrique (SGA 7 I), Lecture Notes in Math. 288, Springer, 1972. MR 0354656 (50:7134)
  • [Ki 1] M. Kisin, Crystalline representations and $ F$-crystals, Algebraic geometry and number theory, Progr. Math 253, Birkhäuser Boston, pp. 459-496, 2006. MR 2263197 (2007j:11163)
  • [Ki 2] M. Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc. 21 (2008), 513-546. MR 2373358 (2009c:11194)
  • [Ki 3] M. Kisin, Modularity of $ 2$-adic Barsotti-Tate representations, Invent. Math. 178 (2009), 587-634. MR 2551765
  • [Ki 4] M. Kisin, Integral canonical models of Shimura varieties (Journées Arithmétiques 2007), J. Th. Nombres Bordeaux 21 (2009), 301-312. MR 2541427
  • [Ko] R. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373-444. MR 1124982 (93a:11053)
  • [La] R. Langlands, Some contemporary problems with origins in the Jugendtraum, Mathematical developments arising from Hilbert problems (De Kalb 1974), Proc. Sympos. Pure Math. XXVIII, Amer. Math. Soc., pp. 401-418, 1976. MR 0437500 (55:10426)
  • [Me] W. Messing, The crystals associated to Barsotti-Tate groups, with applications to Abelian schemes, Lecture Notes in Math. 264, Springer, 1972. MR 0347836 (50:337)
  • [MFK] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, Ergeb. der Math. 34, Springer, 1994. MR 1304906 (95m:14012)
  • [Mi 1] J. Milne, The points on a Shimura variety modulo a prime of good reduction, The zeta functions of Picard modular surfaces, 1992, pp. 151-253. MR 1155229 (94g:11041)
  • [Mi 2] J. Milne, Canonical models of (mixed) Shimura varieties and automorphic vector bundles, Automorphic forms, Shimura varieties. and $ L$-functions I (Ann Arbor 1988), Perspectives in Math. 10, pp. 284-414, 1990. MR 1044823 (91a:11027)
  • [Mi 3] J. Milne, On the conjecture of Langlands and Rapoport, available at www.arxiv.org (2007).
  • [Mi 4] J. Milne, Shimura varieties and motives, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55, Part 2, Amer. Math. Soc., pp. 447-523, 1994. MR 1265562 (95c:11076)
  • [Mo] B. Moonen, Models of Shimura varieties in mixed characteristics, Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. 254, Cambridge Univ. Press, pp. 267-350, 1998. MR 1696489 (2000e:11077)
  • [PY] G. Prasad, J.-K. Yu, On quasi-reductive group schemes. With an appendix by Brian Conrad, J. Algebraic Geom. 15 (2006), 507-549. MR 2219847 (2007c:14047)
  • [RZ] M. Rapoport, T. Zink, Period space for $ p$-divisible groups, Ann. Math. Studies 141, Princeton University Press, 1996. MR 1393439 (97f:14023)
  • [Sa] N. Saavedra Rivano, Catégories Tannakiennes, Lecture Notes in Math. 265, Springer, 1972. MR 0338002 (49:2769)
  • [Sp] T. Springer, Reductive groups, Automorphic forms, representations and $ L$-functions (Corvallis, 1977), Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc., pp. 1-27, 1979. MR 546587 (80h:20062)
  • [Ti] J. Tits, Reductive groups over local fields, Automorphic forms, representations and $ L$-functions (Corvallis, 1977), Proc. Sympos. Pure Math. XXXIII, Amer. Math. Soc., pp. 29-69, 1979. MR 546588 (80h:20064)
  • [Va 1] A. Vasiu, Integral Canonical Models of Shimura Varieties of Preabelian Type, Asian J. Math. 3 (1999), 401-518. MR 1796512 (2002b:11087)
  • [Va 2] A. Vasiu, Integral Canonical Models of Shimura Varieties of Preabelian Type. (Fully corrected version.), available at www.arxiv.org (2003), 135 pages.
  • [Va 3] A. Vasiu, A motivic conjecture of Milne, available at www.arxiv.org (2003), 46 pages.
  • [Va 4] A. Vasiu, Good reductions of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic I, available at www.arxiv.org (2007), 48 pages.
  • [Va 5] A. Vasiu, Good reductions of Shimura varieties of Hodge type in arbitrary unramified mixed characteristic II, available at www.arxiv.org (2007), 33 pages.
  • [Wa] W. Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, Springer, 1997. MR 547117 (82e:14003)
  • [Zi 1] T. Zink, The display of a formal $ p$-divisible group, Cohomologies $ p$-adiques et application arithmétiques I, Astérisque 278, Soc. Math. France, pp. 127-248, 2002. MR 1922825 (2004b:14083)
  • [Zi 2] T. Zink, Windows for displays of $ p$-divisible groups, Moduli of abelian varieties (Text 1999), Prog. in Math. 195, Birkhäuser, pp. 491-518, 2001. MR 1827031 (2002c:14073)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11G18, 14G35

Retrieve articles in all journals with MSC (2010): 11G18, 14G35


Additional Information

Mark Kisin
Affiliation: Department of Mathematics, University of Chicago, Chicago, Illinois 60637
Address at time of publication: Department of Mathematics, Harvard University, 1 Oxford Street, Cambridge, Massachusetts 02138
Email: kisin@math.harvard.edu

DOI: http://dx.doi.org/10.1090/S0894-0347-10-00667-3
Received by editor(s): November 4, 2008
Received by editor(s) in revised form: December 16, 2009
Published electronically: April 21, 2010
Additional Notes: The author was partially supported by NSF grant DMS-0017749000
Article copyright: © Copyright 2010 American Mathematical Society