Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

The complex Monge-Ampère equation on compact Hermitian manifolds


Authors: Valentino Tosatti and Ben Weinkove
Journal: J. Amer. Math. Soc. 23 (2010), 1187-1195
MSC (2010): Primary 53C55; Secondary 32W20, 32U05
DOI: https://doi.org/10.1090/S0894-0347-2010-00673-X
Published electronically: May 26, 2010
MathSciNet review: 2669712
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that, up to scaling, the complex Monge-Ampère equation on compact Hermitian manifolds always admits a smooth solution.


References [Enhancements On Off] (What's this?)

  • [Au] Aubin, T. Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63-95. MR 494932 (81d:53047)
  • [Ca] Calabi, E. On Kähler manifolds with vanishing canonical class, in Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 78-89. Princeton University Press, Princeton, N. J., 1957. MR 0085583 (19:62b)
  • [Ch] Cherrier, P. Équations de Monge-Ampère sur les variétés Hermitiennes compactes, Bull. Sc. Math (2) 111 (1987), 343-385. MR 921559 (89d:58131)
  • [De] Delanoë, P. Équations du type de Monge-Ampère sur les variétés Riemanniennes compactes, II, J. Functional Anal. 41 (1981), 341-353. MR 619957 (83f:53028b)
  • [G1] Gauduchon, P. Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris 285 (1977), 387-390. MR 0470920 (57:10664)
  • [G2] Gauduchon, P. La $ 1$-forme de torsion d'une variètè hermitienne compacte, Math. Ann. 267 (1984), no. 4, 495-518. MR 742896 (87a:53101)
  • [GL] Guan, B., Li, Q. Complex Monge-Ampère equations and totally real submanifolds, Adv. Math. (2010), doi:10.1016/j.aim.2010.03.019
  • [Ha] Hanani, A. Équations du type de Monge-Ampère sur les variétés hermitiennes compactes, J. Funct. Anal. 137 (1996), no. 1, 49-75. MR 1383012 (97c:32018)
  • [TW] Tosatti, V., Weinkove, B. Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds, preprint, arXiv:0909.4496, to appear in Asian J. Math. 2010.
  • [Ya] Yau, S.-T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), no.3, 339-411. MR 480350 (81d:53045)
  • [Zh] Zhang, X. A priori estimates for complex Monge-Ampère equation on Hermitian manifolds, Int. Math. Res. Not. 2010, Art. ID rnq029, 23 pp.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 53C55, 32W20, 32U05

Retrieve articles in all journals with MSC (2010): 53C55, 32W20, 32U05


Additional Information

Valentino Tosatti
Affiliation: Department of Mathematics, Columbia University, 2990 Broadway, New York, New York 10027
Email: tosatti@math.columbia.edu

Ben Weinkove
Affiliation: Department of Mathematics, University of California San Diego, 9500 Gilman Drive #0112, La Jolla, California 92093
Email: weinkove@math.ucsd.edu

DOI: https://doi.org/10.1090/S0894-0347-2010-00673-X
Received by editor(s): November 11, 2009
Received by editor(s) in revised form: May 12, 2010
Published electronically: May 26, 2010
Additional Notes: This research is supported in part by National Science Foundation grant DMS-08-48193. The second author is also supported in part by a Sloan Foundation fellowship.
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society