Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Hall algebras and curve-counting invariants


Author: Tom Bridgeland
Journal: J. Amer. Math. Soc. 24 (2011), 969-998
MSC (2010): Primary 14N35, 14D23
DOI: https://doi.org/10.1090/S0894-0347-2011-00701-7
Published electronically: April 6, 2011
MathSciNet review: 2813335
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use Joyce's theory of motivic Hall algebras to prove that reduced Donaldson-Thomas curve-counting invariants on Calabi-Yau threefolds coincide with stable pair invariants and that the generating functions for these invariants are Laurent expansions of rational functions.


References [Enhancements On Off] (What's this?)

  • 1. K. Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307-1338. MR 2600874 (2011d:14098)
  • 2. K. Behrend and B. Fantechi, Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008), no. 3, 313-345. MR 2407118 (2009c:14006)
  • 3. T. Bridgeland, An introduction to motivic Hall algebras, preprint arXiv 1002.4372.
  • 4. T. Bridgeland and A. Maciocia, Fourier-Mukai transforms for elliptic and K3 fibrations, J. Algebraic Geom. 11 (2002), no. 4, 629-657. MR 1910263 (2004e:14019)
  • 5. J. Engel and M. Reineke, Smooth models of quiver moduli, Math. Z. 262 (2009), no. 4, 817-848. MR 2511752 (2010h:16033)
  • 6. W. Fulton, Intersection Theory, 2nd edition, Springer-Verlag, Berlin, 1998. xiv+470 pp. MR 1644323 (99d:14003)
  • 7. A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique IV: les schémas d'Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. de France, Paris, 1995, Exp. no. 221, 249-276. MR 1611822
  • 8. A. Grothendieck, Élements de géométrie algébrique (rédigés avec la collaboration de Jean Dieudonné): IV. Étude locale des schémas et des morphismes de schémas, Troisième partie. Publications Mathématiques de l'IHÉS 28 (1966), 5-255. MR 0217086 (36:178)
  • 9. D. Happel, I. Reiten, and S. Smalo, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88 pp. MR 1327209 (97j:16009)
  • 10. D. Huybrechts and M. Lehn, The geometry of moduli spaces of shaves, Aspects of Mathematics, E31, 1997. xiv+269 pp. MR 1450870 (98g:14012)
  • 11. D. Joyce, Motivic invariants of Artin stacks and stack functions, Q. J. Math. 58 (2007), no. 3, 345-392. MR 2354923 (2010b:14004)
  • 12. D. Joyce, Configurations in abelian categories. I. Basic properties and moduli stacks, Adv. Math. 203 (2006), no. 1, 194-255. MR 2231046 (2007b:14023)
  • 13. D. Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math. 210 (2007), no. 2, 635-706. MR 2303235 (2008f:14022)
  • 14. D. Joyce, Configurations in abelian categories. III. Stability conditions and identities, Adv. in Math. 215 (2007), no. 1, 153-219. MR 2354988 (2009d:18015a)
  • 15. D. Joyce, Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. in Math. 217 (2008), no. 1, 125-204. MR 2357325 (2009d:18015b)
  • 16. D. Joyce and Y. Song, A theory of generalized DT invariants, preprint arXiv:0810.5645.
  • 17. J. Kollár and S. Mori, Birational geometry of algebraic varieties, Cambridge University Press, Cambridge, 1998. viii+254 pp. MR 1658959 (2000b:14018)
  • 18. M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint arxiv 0811.2435.
  • 19. M. Levine and R. Pandharipande, Algebraic cobordism revisited, Invent. Math. 176 (2009), no. 1, 63-130. MR 2485880 (2010h:14033)
  • 20. J. Li, Zero dimensional Donaldson-Thomas invariants of threefolds, Geom. Topology 10 (2006), 2117-2171. MR 2284053 (2007k:14116)
  • 21. D. Maulik, N. Nekrasov, A. Okounkov, R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I. Compos. Math. 142 (2006), no. 5, 1263-1285. MR 2264664 (2007i:14061)
  • 22. N. Nitsure, Construction of Hilbert and Quot schemes, Fundamental algebraic geometry, 105-137, Math. Surveys Monogr., 123, Amer. Math. Soc., Providence, RI, 2005. MR 2223407
  • 23. R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407-447. MR 2545686 (2010h:14089)
  • 24. M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003), no. 2, 349-368. MR 1974891 (2004a:16028)
  • 25. J. Stoppa and R. P. Thomas, Hilbert schemes and stable pairs: GIT and derived category wall crossings, preprint.
  • 26. R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $ K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367-438. MR 1818182 (2002b:14049)
  • 27. Y. Toda, Generating functions of stable pair invariants via wall-crossings in derived categories, New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008), 389-434, Adv. Stud. Pure Math., 59, Math. Soc. Japan, Tokyo (2010). MR 2683216
  • 28. Y. Toda, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), no. 4, 1119-1157. MR 2669709
  • 29. A. Vistoli, Grothendieck topologies, fibered categories and descent theory. Fundamental algebraic geometry, 1-104, Math. Surveys Monogr., 123, Amer. Math. Soc., Providence, RI, 2005. MR 2223406

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14N35, 14D23

Retrieve articles in all journals with MSC (2010): 14N35, 14D23


Additional Information

Tom Bridgeland
Affiliation: All Souls College, Oxford, OX1 4AL United Kingdom

DOI: https://doi.org/10.1090/S0894-0347-2011-00701-7
Received by editor(s): February 25, 2010
Received by editor(s) in revised form: March 9, 2011
Published electronically: April 6, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society