Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Products of conjugacy classes and fixed point spaces


Authors: Robert Guralnick and Gunter Malle
Journal: J. Amer. Math. Soc. 25 (2012), 77-121
MSC (2010): Primary 20C15, 20C20, 20D05; Secondary 20E28, 20E45, 20F10, 20F69
DOI: https://doi.org/10.1090/S0894-0347-2011-00709-1
Published electronically: June 27, 2011
MathSciNet review: 2833479
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove several results on products of conjugacy classes in finite simple groups. The first result is that for any finite nonabelian simple groups, there exists a triple of conjugate elements with product $ 1$ which generate the group. This result and other ideas are used to solve a 1966 conjecture of Peter Neumann about the existence of elements in an irreducible linear group with small fixed space. We also show that there always exist two conjugacy classes in a finite nonabelian simple group whose product contains every nontrivial element of the group. We use this to show that every element in a nonabelian finite simple group can be written as a product of two $ r$th powers for any prime power $ r$ (in particular, a product of two squares answering a conjecture of Larsen, Shalev and Tiep).


References [Enhancements On Off] (What's this?)

  • 1. J. Bamberg, T. Penttila, Overgroups of cyclic Sylow subgroups of linear groups. Comm. Algebra 36 (2008), 2503-2543. MR 2422501 (2009k:20108)
  • 2. I. Bauer, F. Catanese, F. Grunewald, Beauville surfaces without real structures, pp. 1-42 in: Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, 2005. MR 2159375 (2006f:14040)
  • 3. I. Bauer, F. Catanese, F. Grunewald, Chebycheff and Belyi polynomials, dessins d'enfants, Beauville surfaces and group theory. Mediterr. J. Math. 3 (2006), 121-146. MR 2241319 (2007c:14006)
  • 4. E. Bertram, Even permutations as a product of two conjugate cycles. J. Combinatorial Theory Ser. A 12 (1972), 368-380. MR 0297853 (45:6905)
  • 5. T. Breuer, R. Guralnick, W. Kantor, Probabilistic generation of finite simple groups. II. J. Algebra 320 (2008), 443-494. MR 2422303 (2010e:20096)
  • 6. R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters. Wiley Classics Library. John Wiley & Sons, Chichester, 1993. MR 1266626 (94k:20020)
  • 7. V. Chernousov, E. Ellers, N. Gordeev, Gauss decomposition with prescribed semisimple part: short proof. J. Algebra 229 (2000), 314-332. MR 1765783 (2001e:20028)
  • 8. J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups. Clarendon Press, Oxford, 1985. MR 827219 (88g:20025)
  • 9. B. N. Cooperstein, Maximal subgroups of $ G_2(2^n)$. J. Algebra 70 (1981), 23-36. MR 618376 (82h:20055)
  • 10. B. N. Cooperstein, Subgroups of exceptional groups of Lie type generated by long root elements. I, II. J. Algebra 70 (1981), 270-282 and 283-298. MR 0618394 (83i:20038a); MR 0618395 (83i:20038b)
  • 11. F. Digne, J. Michel, Representations of finite groups of Lie type. London Math. Soc. Student Texts, 21. Cambridge University Press, Cambridge, 1991. MR 1118841 (92g:20063)
  • 12. E.W. Ellers, N. Gordeev, On conjectures of J. Thompson and O. Ore. Trans. Amer. Math. Soc. 350 (1998), 3657-3671. MR 1422600 (98k:20022)
  • 13. W. Feit, On large Zsigmondy primes. Proc. Amer. Math. Soc. 102 (1988), 29-36. MR 915710 (89b:11009)
  • 14. P. Fong, B. Srinivasan, The blocks of finite general linear and unitary groups. Invent. Math. 69 (1982), 109-153. MR 671655 (83k:20013)
  • 15. P. Fong, B. Srinivasan, Brauer trees in classical groups. J. Algebra 131 (1990), 179-225. MR 1055005 (91i:20008)
  • 16. S. Garion, M. Penegini, New Beauville surfaces, moduli spaces and finite groups. Preprint, arXiv:0910.5402.
  • 17. S. Garion, M. Larsen, A. Lubotzky, Beauville surfaces and finite simple groups. J. Reine Angew. Math., to appear.
  • 18. M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer, CHEVIE - A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras. Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175-210. MR 1486215 (99m:20017)
  • 19. J. Getz, An approach to nonsolvable base change and descent for $ \operatorname{GL}_2$ over number fields. Preprint.
  • 20. D. Gluck, Sharper character value estimates for groups of Lie type. J. Algebra 174 (1995), 229-266. MR 1332870 (96m:20021)
  • 21. R. Gow, Commutators in finite simple groups of Lie type. Bull. London Math. Soc. 32 (2000), 311-315. MR 1750469 (2001b:20024)
  • 22. R. Guralnick, Some applications of subgroup structure to probabilistic generation and covers of curves, pp. 301-320 in: Algebraic groups and their representations (Cambridge, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 517, Kluwer Acad. Publ., Dordrecht, 1998. MR 1670777 (2000d:20062)
  • 23. R. Guralnick, W. Kantor, Probabilistic generation of finite simple groups. J. Algebra 234 (2000), 743-792. MR 1800754 (2002f:20038)
  • 24. R. Guralnick, M. Larsen, C. Manack, Low dimensional representations of simple Lie groups. Preprint, arXiv:1009.6183.
  • 25. R. Guralnick, G. Malle, Simple groups admit Beauville structures. Proc. Amer. Math. Soc., to appear.
  • 26. R. Guralnick, A. Maróti, Average dimension of fixed points with applications. Adv. Math. 226 (2011), 298-308. MR 2735760
  • 27. R. Guralnick, M. Neubauer, Monodromy groups of branched coverings: the generic case, pp. 325-352 in: Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math., 186, Amer. Math. Soc., Providence, RI, 1995. MR 1352281 (96h:20007)
  • 28. R. Guralnick, C. Praeger, T. Penttila, J. Saxl, Linear groups with orders having certain large prime divisors. Proc. London Math. Soc. 78 (1999), 167-214. MR 1658168 (99m:20113)
  • 29. C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedicata 2 (1974), 425-460. MR 0335659 (49:439)
  • 30. G. Hiss, G. Malle, Low-dimensional representations of quasi-simple groups, LMS J. Comput. Math. 4 (2001), 22-63; Corrigenda: ibid. 5 (2002), 95-126. MR 1835851 (2002b:20015); MR 1942256 (2003k:20010)
  • 31. P. Hoffman, J. Humphreys, Projective representations of the symmetric groups. $ Q$-functions and shifted tableaux. The Clarendon Press, Oxford University Press, New York, 1992. MR 1205350 (94f:20027)
  • 32. I. M. Isaacs, T. M. Keller, U. Meierfrankenfeld, A. Moretó, Fixed point spaces, primitive character degrees and conjugacy class sizes. Proc. Amer. Math. Soc. 134 (2006), 3123-3130. MR 2231893 (2007d:20010)
  • 33. P. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal groups $ P\Omega_8^+(q)$ and of their automorphism groups. J. Algebra 110 (1987), 173-242. MR 904187 (88i:20070)
  • 34. P. Kleidman, The maximal subgroups of the Chevalley groups $ G_2(q)$ with $ q$ odd, the Ree groups $ {}^2G_2(q)$, and their automorphism groups. J. Algebra 117 (1988), 30-71. MR 955589 (89j:20055)
  • 35. M. Larsen, A. Shalev, Characters of symmetric groups: sharp bounds and applications. Invent. Math. 174 (2008), 645-687. MR 2453603 (2010g:20022)
  • 36. M. Larsen, A. Shalev, P. Tiep, Waring problem for finite simple groups. Annals Math., to appear.
  • 37. M. Liebeck, J. Saxl, Minimal degrees of primitive permutation groups, with an application to monodromy groups of covers of Riemann surfaces. Proc. London Math. Soc. 63 (1991), 266-314. MR 1114511 (92f:20003)
  • 38. M. Liebeck, G. Seitz, A survey of maximal subgroups of exceptional groups of Lie type, pp. 139-146 in: Groups, Combinatorics and Geometry (Durham, 2001), World Scientific, 2003. MR 1994964 (2004f:20089)
  • 39. F. Lübeck, Smallest degrees of representations of exceptional groups of Lie type. Comm. Algebra 29 (2001), 2147-2169. MR 1837968 (2002g:20029)
  • 40. F. Lübeck, G. Malle, $ (2,3)$-generation of exceptional groups. J. London Math. Soc. (2) 59 (1999),109-122. MR 1688493 (2000e:20030)
  • 41. A. M. Macbeath, Generators of the linear fractional groups, pp. 14-32 in: Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967, Amer. Math. Soc., Providence, R.I. MR 0262379 (41:6987)
  • 42. G. Malle, Die unipotenten Charaktere von $ {}^2F_4(q^2)$. Comm. Algebra 18 (1990), 2361-2381. MR 1063140 (91k:20015)
  • 43. G. Malle, B. H. Matzat, Inverse Galois theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1999. MR 1711577 (2000k:12004)
  • 44. G. Malle, J. Saxl, Th. Weigel, Generation of classical groups. Geom. Dedicata 49 (1994), 85-116. MR 1261575 (95c:20068)
  • 45. P. M. Neumann, A study of some finite permutation groups. Ph.D. thesis, Oxford, 1966.
  • 46. A. Ryba, Short proofs of embeddings into exceptional groups of Lie type. J. Algebra 249 (2002), 402-418. MR 1901165 (2003i:20081)
  • 47. L. Scott, Matrices and cohomology. Ann. of Math. (2) 105 (1977), 473-492. MR 0447434 (56:5746)
  • 48. D. Segal, A. Shalev, On groups with bounded conjugacy classes. Quart. J. Math. Oxford 50 (1999), 505-516. MR 1726791 (2000j:20053)
  • 49. P. H. Tiep, A. Zalesskii, Minimal characters of the finite classical groups. Comm. Algebra 24 (1996), 2093-2167. MR 1386030 (97f:20018)
  • 50. Th. Weigel, Generation of exceptional groups of Lie-type. Geom. Dedicata 41 (1992), 63-87. MR 1147502 (93b:20083)
  • 51. H. Wielandt, Finite permutation groups. Academic Press, New York-London, 1964. MR 0183775 (32:1252)
  • 52. A. Williamson, On primitive permutation groups containing a cycle. Math. Z. 130 (1973), 159-162. MR 0318272 (47:6819)
  • 53. R. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, R. Abbott, ATLAS of Finite Group Representations - Version 3, http://brauer.maths.qmul.ac.uk/Atlas/v3/.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 20C15, 20C20, 20D05, 20E28, 20E45, 20F10, 20F69

Retrieve articles in all journals with MSC (2010): 20C15, 20C20, 20D05, 20E28, 20E45, 20F10, 20F69


Additional Information

Robert Guralnick
Affiliation: Department of Mathematics, University of Southern California, 3620 S. Vermont Avenue, Los Angeles, California 90089-2532
Email: guralnic@usc.edu

Gunter Malle
Affiliation: FB Mathematik, TU Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
Email: malle@mathematik.uni-kl.de

DOI: https://doi.org/10.1090/S0894-0347-2011-00709-1
Received by editor(s): May 20, 2010
Received by editor(s) in revised form: June 4, 2010, January 11, 2011, and April 19, 2011
Published electronically: June 27, 2011
Additional Notes: The first author was partially supported by NSF grants DMS 0653873 and 1001962.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society