Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Gravitational instantons from rational elliptic surfaces


Author: Hans-Joachim Hein
Journal: J. Amer. Math. Soc. 25 (2012), 355-393
MSC (2010): Primary 53C25, 14J27
DOI: https://doi.org/10.1090/S0894-0347-2011-00723-6
Published electronically: November 18, 2011
MathSciNet review: 2869021
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ denote the complex projective plane, blown up at the nine base points of a pencil of cubics, and let $ D$ be any fiber of the resulting elliptic fibration on $ X$. Using ansatz metrics inspired by work of Gross-Wilson and a PDE method due to Tian-Yau, we prove that $ X \setminus D$ admits complete Ricci-flat Kähler metrics in most de Rham cohomology classes. If $ D$ is smooth, the metrics converge to split flat cylinders $ \mathbb{R}^+ \times S^1 \times D$ at an exponential rate. In this case, we also obtain a partial uniqueness result and a local description of the Einstein moduli space, which contains cylindrical metrics whose cross section does not split off a circle. If $ D$ is singular but of finite monodromy, they converge at least polynomially to flat $ T^2$-submersions over flat $ 2$-dimensional cones that need not be quotients of $ \mathbb{R}^2$. If $ D$ is singular of infinite monodromy, their volume growth rates are $ 4/3$ and $ 2$ for the Kodaira types $ {\rm I}_b$ and $ {{\rm I}_b}^*$, their injectivity radii decay like $ r^{-1/3}$ and $ (\log r)^{-1/2}$, and their curvature tensors decay like $ r^{-2}$ and $ r^{-2}(\log r)^{-1}$. In particular, the $ {\rm I}_b$ examples show that a curvature estimate due to Cheeger and Tian cannot be improved in general.


References [Enhancements On Off] (What's this?)

  • 1. M. Anderson, The $ L^2$-structure of moduli spaces of Einstein metrics on $ 4$-manifolds, Geom. Funct. Anal. 2 (1992), 29-89. MR 1143663 (92m:58017)
  • 2. M. Atiyah, N. Hitchin, The geometry and dynamics of magnetic monopoles, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988. MR 934202 (89k:53067)
  • 3. W. Barth, C. Peters, A. van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 4, Springer-Verlag, Berlin, 1984. MR 749574 (86c:32026)
  • 4. A. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 10, Springer-Verlag, Berlin, 1987. MR 867684 (88f:53087)
  • 5. O. Biquard, V. Minerbe, A Kummer construction for gravitational instantons, Comm. Math. Phys., to appear.
  • 6. P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. (4) 15 (1982), 213-230. MR 683635 (84e:58076)
  • 7. J. Cheeger, Degeneration of Einstein metrics and metrics with special holonomy, Surveys in Differential Geometry VIII (Boston, MA, 2002), 29-73, International Press, Somerville, MA, 2003. MR 2039985 (2005e:53060)
  • 8. J. Cheeger, T. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2) 144 (1996), 189-237. MR 1405949 (97h:53038)
  • 9. J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differ. Geom. 17 (1982), 15-53. MR 658471 (84b:58109)
  • 10. J. Cheeger, G. Tian, Curvature and injectivity radius estimates for Einstein $ 4$-manifolds, J. Amer. Math. Soc. 19 (2006), 487-525. MR 2188134 (2006i:53042)
  • 11. S. Cherkis, N. Hitchin, Gravitational instantons of type $ D_k$, Comm. Math. Phys. 260 (2005), 299-317. MR 2177322 (2007a:53095)
  • 12. S. Cherkis, A. Kapustin, Hyper-Kähler metrics from periodic monopoles, Phys. Rev. D (3) 65 (2002), 084015. MR 1899201 (2003g:53069)
  • 13. S. Donaldson, Calabi-Yau metrics on Kummer surfaces as a model gluing problem, preprint, arXiv:1007.4218.
  • 14. D. Freed, Special Kähler manifolds, Comm. Math. Phys. 203 (1999), 31-52. MR 1695113 (2000f:53060)
  • 15. R. Gompf, A. Stipsicz, $ 4$-manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society, Providence, RI, 1999. MR 1707327 (2000h:57038)
  • 16. R. Goto, Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, $ G_2$ and $ {\rm Spin}(7)$ structures, Internat. J. Math. 15 (2004), 211-257. MR 2060789 (2005f:53082)
  • 17. B. Greene, A. Shapere, C. Vafa, S.-T. Yau, Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nuclear Phys. B 337 (1990), 1-36. MR 1059826 (91g:83057)
  • 18. P. Griffiths, J. Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience, New York, 1978. MR 507725 (80b:14001)
  • 19. A. Grigoryan, L. Saloff-Coste, Stability results for Harnack inequalities, Ann. Inst. Fourier 55 (2005), 825-890. MR 2149405 (2006b:58026)
  • 20. M. Gross, P. Wilson, Large complex structure limits of $ K3$ surfaces, J. Differ. Geom. 55 (2000), 475-546. MR 1863732 (2003a:32042)
  • 21. B. Harbourne, W. Lang, Multiple fibers on rational elliptic surfaces, Trans. Amer. Math. Soc. 307 (1988), 205-223. MR 936813 (89j:14024)
  • 22. H.-J. Hein, On gravitational instantons, Ph.D. thesis, Princeton University, September 2010. MR 2813955
  • 23. H.-J. Hein, Weighted Sobolev inequalities under lower Ricci curvature bounds, Proc. Amer. Math. Soc. 139 (2011), 2943-2955. MR 2801635
  • 24. N. Hitchin, Twistor construction of Einstein metrics, Global Riemannian geometry (Durham, 1983), 115-125, Ellis Horwood Ser.: Math. Appl., Horwood, Chichester, 1984. MR 757213 (85m:53048)
  • 25. N. Hitchin, The moduli space of complex Lagrangian submanifolds, Asian J. Math. 3 (1999), 77-92. MR 1701923 (2000m:32023)
  • 26. D. Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005. MR 2093043 (2005h:32052)
  • 27. D. Joyce, Asymptotically locally Euclidean metrics with holonomy $ {\rm SU}(m)$, Ann. Global Anal. Geom. 19 (2001), 55-73. MR 1824171 (2002i:53063)
  • 28. F. Klein, Vorlesungen über die Theorie der elliptischen Modulfunctionen, Erster Band, Teubner, Leipzig, 1890.
  • 29. K. Kodaira, On compact analytic surfaces, II, Ann. of Math. (2) 77 (1963), 563-626. MR 0184257 (32:1730)
  • 30. K. Kodaira, L. Nirenberg, D. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math. (2) 68 (1958), 450-459. MR 0112157 (22:3012)
  • 31. K. Kodaira, D. Spencer, On deformations of complex analytic structures, III, Stability theorems for complex structures, Ann. of Math. (2) 71 (1960), 43-76. MR 0115189 (22:5991)
  • 32. B. Köhler, M. Kühnel, On asymptotics of complete Ricci-flat Kähler metrics on open manifolds, Manuscripta Math. 132 (2010), 431-462. MR 2652441 (2011h:32025)
  • 33. N. Koiso, Einstein metrics and complex structures, Invent. Math. 73 (1983), 71-106. MR 707349 (85d:58018)
  • 34. A. Kovalev, Twisted connected sums and special Riemannian holonomy, J. reine angew. Math. 565 (2003), 125-160. MR 2024648 (2004m:53088)
  • 35. A. Kovalev, Ricci-flat deformations of asymptotically cylindrical Calabi-Yau manifolds, Proceedings of Gökova Geometry-Topology Conference 2005, 140-156, Gökova, 2006. MR 2282013 (2008c:32034)
  • 36. P. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differ. Geom. 29 (1989), 665-683. MR 992334 (90d:53055)
  • 37. P. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differ. Geom. 29 (1989), 685-697. MR 992335 (90d:53056)
  • 38. C. LeBrun, Complete Ricci-flat Kähler metrics on $ \mathbb{C}^n$ need not be flat, Several complex variables and complex geometry (Santa Cruz, CA, 1989), 297-304, Proc. Sympos. Pure Math. 52, Part 2, American Mathematical Society, Providence, RI, 1991. MR 1128554 (93a:53038)
  • 39. P. Li, L.-F. Tam, Green's functions, harmonic functions, and volume comparison, J. Differ. Geom. 41 (1995), 277-318. MR 1331970 (96f:53054)
  • 40. J. Loftin, Singular semi-flat Calabi-Yau metrics on $ S^2$, Comm. Anal. Geom. 13 (2005), 333-361. MR 2154822 (2006d:32035)
  • 41. P. Maheux, L. Saloff-Coste, Analyse sur les boules d'un opérateur sous-elliptique, Math. Ann. 303 (1995), 713-740. MR 1359957 (96m:35049)
  • 42. V. Minerbe, On the asymptotic geometry of gravitational instantons, Ann. Sci. École Norm. Sup. (4) 43 (2010), 883-924. MR 2778451
  • 43. V. Minerbe, Rigidity for Multi-Taub-NUT metrics, J. reine angew. Math. 656 (2011), 47-58.
  • 44. R. Miranda, The moduli of Weierstrass fibrations over $ {\mathbf P}^1$, Math. Ann. 255 (1981), 379-394. MR 615858 (83b:14010)
  • 45. R. Miranda, Persson's list of singular fibers for a rational elliptic surface, Math. Z. 205 (1990), 191-211. MR 1076128 (92a:14035)
  • 46. A. Naber, G. Tian, Geometric structures of collapsing Riemannian manifolds, I, preprint, arXiv:0804.2275.
  • 47. J. Nordström, Deformations of asymptotically cylindrical $ G_2$-manifolds, Math. Proc. Camb. Phil. Soc. 145 (2008), 311-348. MR 2442130 (2009e:53068)
  • 48. J. Nordström, Deformations of glued $ G_2$-manifolds, Comm. Anal. Geom. 17 (2009), 481-503. MR 2550206 (2011b:53118)
  • 49. B. Santoro, Existence of complete Kähler Ricci-flat metrics on crepant resolutions, preprint, arXiv:0902.0595.
  • 50. J. Song, G. Tian, The Kähler-Ricci flow on surfaces of positive Kodaira dimension, Invent. Math. 170 (2007), 609-653. MR 2357504 (2008m:32044)
  • 51. G. Tian, Smoothness of the universal deformation space of Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical aspects of string theory (San Diego, CA, 1986), 629-646, Adv. Ser. Math. Phys. 1, World Sci. Publishing, Singapore, 1987. MR 915841
  • 52. G. Tian, Aspects of metric geometry of four manifolds, Inspired by S. S. Chern, 381-397, Nankai Tracts Math. 11, World Scientific Publishing, Hackensack, NJ, 2006. MR 2313343 (2008i:53044)
  • 53. G. Tian, S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature, I, J. Amer. Math. Soc. 3 (1990), 579-609. MR 1040196 (91a:53096)
  • 54. G. Tian, S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature, II, Invent. Math. 106 (1991), 27-60. MR 1123371 (92j:32028)
  • 55. A. Todorov, The Weil-Petersson geometry of the moduli space of $ {\rm SU}(n \geq 3)$ (Calabi-Yau) manifolds, I, Comm. Math. Phys. 126 (1989), 325-346. MR 1027500 (91f:32022)
  • 56. V. Tosatti, Adiabatic limits of Ricci-flat Kähler metrics, J. Differ. Geom. 84 (2010), 427-453. MR 2652468 (2011m:32039)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 53C25, 14J27

Retrieve articles in all journals with MSC (2010): 53C25, 14J27


Additional Information

Hans-Joachim Hein
Affiliation: Department of Mathematics, Imperial College, London SW7 2AZ, United Kingdom
Email: h.hein@imperial.ac.uk

DOI: https://doi.org/10.1090/S0894-0347-2011-00723-6
Received by editor(s): April 24, 2010
Received by editor(s) in revised form: August 25, 2010, September 30, 2011, October 19, 2011, and October 23, 2011
Published electronically: November 18, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society