New bounds on cap sets

Authors:
Michael Bateman and Nets Hawk Katz

Journal:
J. Amer. Math. Soc. **25** (2012), 585-613

MSC (2010):
Primary 11T71; Secondary 05D40

Published electronically:
November 29, 2011

MathSciNet review:
2869028

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We provide an improvement over Meshulam's bound on cap sets in . We show that there exist universal and so that any cap set in has size at most . We do this by obtaining quite strong information about the additive combinatorial properties of the large spectrum.

**[CS11]**Ernie Croot and Olof Sisask,*A probabilistic technique for finding almost-periods of convolutions*, Geom. Funct. Anal.**20**(2010), no. 6, 1367–1396. MR**2738997**, 10.1007/s00039-010-0101-8**[G]**T. Gowers,*What is difficult about the cap set problem?*, http://gowers.wordpress.com/ 2011/01/11/what-is-difficult-about-the-cap-set-problem/.**[K1]**(M. Bateman and) N.H. Katz, http://gowers.wordpress.com/2011/01/11/what-is-difficult-about-the-cap-set-problem/# comment-10533.**[K2]**(M. Bateman and) N.H. Katz, http://gowers.wordpress.com/2011/01/11/what-is-difficult-about-the-cap-set-problem/# comment-10540.**[KK10]**Nets Hawk Katz and Paul Koester,*On additive doubling and energy*, SIAM J. Discrete Math.**24**(2010), no. 4, 1684–1693. MR**2746716**, 10.1137/080717286**[M95]**Roy Meshulam,*On subsets of finite abelian groups with no 3-term arithmetic progressions*, J. Combin. Theory Ser. A**71**(1995), no. 1, 168–172. MR**1335785**, 10.1016/0097-3165(95)90024-1**[PM]**Polymath on wikipedia, http://en.wikipedia.org/wiki/Polymath_project#Polymath _Project.**[PM6]**Polymath 6: Improving the bounds for Roth's theorem, http://polymathprojects.org/ 2011/02/05/polymath6-improving-the-bounds-for-roths-theorem/.**[R99]**Imre Z. Ruzsa,*An analog of Freiman’s theorem in groups*, Astérisque**258**(1999), xv, 323–326 (English, with English and French summaries). Structure theory of set addition. MR**1701207****[S08]**T. Sanders,*A note on Freĭman’s theorem in vector spaces*, Combin. Probab. Comput.**17**(2008), no. 2, 297–305. MR**2396355**, 10.1017/S0963548307008644**[S10]**T. Sanders,*Structure in Sets with Logarithmic Doubling*, Arxiv 1002.1552.**[S11]**T. Sanders,*On Roth's Theorem on Progressions*, Arxiv 1011.0104.**[Sch11]**Tomasz Schoen,*Near optimal bounds in Freiman’s theorem*, Duke Math. J.**158**(2011), no. 1, 1–12. MR**2794366**, 10.1215/00127094-1276283**[Shk08]**I. D. Shkredov,*On sets of large trigonometric sums*, Izv. Ross. Akad. Nauk Ser. Mat.**72**(2008), no. 1, 161–182 (Russian, with Russian summary); English transl., Izv. Math.**72**(2008), no. 1, 149–168. MR**2394976**, 10.1070/IM2008v072n01ABEH002396**[TV06]**Terence Tao and Van Vu,*Additive combinatorics*, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR**2289012**

Retrieve articles in *Journal of the American Mathematical Society*
with MSC (2010):
11T71,
05D40

Retrieve articles in all journals with MSC (2010): 11T71, 05D40

Additional Information

**Michael Bateman**

Affiliation:
Department of Mathematics, UCLA, Los Angeles, California 90095

Email:
bateman@math.ucla.edu

**Nets Hawk Katz**

Affiliation:
Department of Mathematics, Indiana University, Bloomington, Indiana 47405-7000

Email:
nhkatz@indiana.edu

DOI:
https://doi.org/10.1090/S0894-0347-2011-00725-X

Received by editor(s):
April 2, 2011

Received by editor(s) in revised form:
October 28, 2011

Published electronically:
November 29, 2011

Additional Notes:
The first author is supported by an NSF postdoctoral fellowship, DMS-0902490

The second author is partially supported by NSF grant DMS-1001607

Article copyright:
© Copyright 2011
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.