Nonnegative polynomials and sums of squares
Author:
Grigoriy Blekherman
Journal:
J. Amer. Math. Soc. 25 (2012), 617635
MSC (2010):
Primary 14N05, 14P99; Secondary 52A20
Published electronically:
March 15, 2012
MathSciNet review:
2904568
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In the smallest cases where there exist nonnegative polynomials that are not sums of squares we present a complete explanation of this distinction. The fundamental reason that the cone of sums of squares is strictly contained in the cone of nonnegative polynomials is that polynomials of degree satisfy certain linear relations, known as the CayleyBacharach relations, which are not satisfied by polynomials of full degree . For any nonnegative polynomial that is not a sum of squares we can write down a linear inequality coming from a CayleyBacharach relation that certifies this fact. We also characterize strictly positive sums of squares that lie on the boundary of the cone of sums of squares and extreme rays of the cone dual to the cone of sums of squares.
 1.
Grigoriy
Blekherman, There are significantly more nonnegative polynomials
than sums of squares, Israel J. Math. 153 (2006),
355–380. MR 2254649
(2007f:14062), 10.1007/BF02771790
 2.
G. Blekherman, J. Hauenstein, J. C. Ottem, K. Ranestad, B. Sturmfels, Algebraic Boundaries of Hilbert's SOS Cones, submitted for publication, arXiv:1107.1846.
 3.
Jacek
Bochnak, Michel
Coste, and MarieFrançoise
Roy, Real algebraic geometry, Ergebnisse der Mathematik und
ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)],
vol. 36, SpringerVerlag, Berlin, 1998. Translated from the 1987
French original; Revised by the authors. MR 1659509
(2000a:14067)
 4.
Alicia
Dickenstein and Ioannis
Z. Emiris (eds.), Solving polynomial equations, Algorithms and
Computation in Mathematics, vol. 14, SpringerVerlag, Berlin, 2005.
Foundations, algorithms, and applications. MR 2161984
(2008d:14095)
 5.
M.
D. Choi, T.
Y. Lam, and Bruce
Reznick, Even symmetric sextics, Math. Z. 195
(1987), no. 4, 559–580. MR 900345
(88j:11019), 10.1007/BF01166704
 6.
David
Eisenbud, Mark
Green, and Joe
Harris, CayleyBacharach theorems and
conjectures, Bull. Amer. Math. Soc. (N.S.)
33 (1996), no. 3,
295–324. MR 1376653
(97a:14059), 10.1090/S0273097996006660
 7.
G.
H. Hardy, J.
E. Littlewood, and G.
Pólya, Inequalities, Cambridge Mathematical Library,
Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition.
MR 944909
(89d:26016)
 8.
Joe
Harris, Algebraic geometry, Graduate Texts in Mathematics,
vol. 133, SpringerVerlag, New York, 1995. A first course; Corrected
reprint of the 1992 original. MR 1416564
(97e:14001)
 9.
Jiawang
Nie and Markus
Schweighofer, On the complexity of Putinar’s
Positivstellensatz, J. Complexity 23 (2007),
no. 1, 135–150. MR 2297019
(2008b:14095), 10.1016/j.jco.2006.07.002
 10.
Jean
B. Lasserre, Global optimization with polynomials and the problem
of moments, SIAM J. Optim. 11 (2000/01), no. 3,
796–817. MR 1814045
(2002b:90054), 10.1137/S1052623400366802
 11.
Pablo
A. Parrilo, Semidefinite programming relaxations for semialgebraic
problems, Math. Program. 96 (2003), no. 2, Ser.
B, 293–320. Algebraic and geometric methods in discrete optimization.
MR
1993050 (2004g:90075), 10.1007/s1010700303875
 12.
Motakuri
Ramana and A.
J. Goldman, Some geometric results in semidefinite
programming, J. Global Optim. 7 (1995), no. 1,
33–50. MR
1342934 (96i:90059), 10.1007/BF01100204
 13.
Bruce
Reznick, Sums of even powers of real linear forms, Mem. Amer.
Math. Soc. 96 (1992), no. 463, viii+155. MR 1096187
(93h:11043), 10.1090/memo/0463
 14.
Bruce
Reznick, Some concrete aspects of Hilbert’s 17th
Problem, Real algebraic geometry and ordered structures (Baton Rouge,
LA, 1996), Contemp. Math., vol. 253, Amer. Math. Soc., Providence,
RI, 2000, pp. 251–272. MR 1747589
(2001i:11042), 10.1090/conm/253/03936
 15.
B.Reznick, On Hilbert's construction of positive polynomials, arXiv:0707.2156.
 16.
Raman
Sanyal, Frank
Sottile, and Bernd
Sturmfels, Orbitopes, Mathematika 57 (2011),
no. 2, 275–314. MR 2825238
(2012g:52001), 10.1112/S002557931100132X
 17.
Rolf
Schneider, Convex bodies: the BrunnMinkowski theory,
Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge
University Press, Cambridge, 1993. MR 1216521
(94d:52007)
 1.
 G. Blekherman, There are significantly more nonnegative polynomials than sums of squares, Israel J. of Math., vol. 183, 355380, 2006. MR 2254649 (2007f:14062)
 2.
 G. Blekherman, J. Hauenstein, J. C. Ottem, K. Ranestad, B. Sturmfels, Algebraic Boundaries of Hilbert's SOS Cones, submitted for publication, arXiv:1107.1846.
 3.
 J. Bochnak, M. Coste, M.F. Roy, Real Algebraic Geometry, SpringerVerlag, Berlin, 1998. MR 1659509 (2000a:14067)
 4.
 E. Cattani and A. Dickenstein, Introduction to residues and resultants, in Solving Polynomial Equations: Foundations, Algorithms, and Applications (eds., A. Dickenstein and I. Z. Emiris), Algorithms and Computation in Mathematics 14, Springer, 2005. MR 2161984 (2008d:14095)
 5.
 M. D. Choi, T. Y. Lam, B. Reznick Even symmetric sextics. Math. Z. 195, no. 4, 559580, 1987. MR 900345 (88j:11019)
 6.
 D. Eisenbud, M. Green, J. Harris, CayleyBacharach theorems and conjectures, Bull. Amer. Math. Soc., vol. 33, no. 3, 295324, 1996. MR 1376653 (97a:14059)
 7.
 G. Hardy, E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, 1988. MR 944909 (89d:26016)
 8.
 J. Harris, Algebraic Geometry. A First Course, Graduate Texts in Mathematics, vol. 133, SpringerVerlag, New York, 1995. MR 1416564 (97e:14001)
 9.
 J. Nie, M. Schweighofer, On the complexity of Putinar's Positivstellensatz, J. of Complex., vol. 23, no. 1, 135150, 2007. MR 2297019 (2008b:14095)
 10.
 J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim., vol. 11, no. 3, 796817 (electronic), 2000/01. MR 1814045 (2002b:90054)
 11.
 P. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program., vol. 96, no. 2, Ser. B, 293320, 2000/01. MR 1993050 (2004g:90075)
 12.
 M. Ramana, A. J. Goldman, Some geometric results in semidefinite programming, J. Global Optim., vol. 7, no. 1, 3350, 1995. MR 1342934 (96i:90059)
 13.
 B. Reznick, Sums of Even Powers of Real Linear Forms, Mem. Amer. Math. Soc., vol. 96, no. 463, 1992. MR 1096187 (93h:11043)
 14.
 B. Reznick, Some concrete aspects of Hilbert's 17th Problem, Contemp. Math., no. 253, 251272, 2000. MR 1747589 (2001i:11042)
 15.
 B.Reznick, On Hilbert's construction of positive polynomials, arXiv:0707.2156.
 16.
 R. Sanyal, F. Sottile, B. Sturmfels, Orbitopes, Mathematika, vol. 57 (2011), 275314. MR 2825238
 17.
 R. Schneider, Convex Bodies: the BrunnMinkowski Theory, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
Similar Articles
Retrieve articles in Journal of the American Mathematical Society
with MSC (2010):
14N05,
14P99,
52A20
Retrieve articles in all journals
with MSC (2010):
14N05,
14P99,
52A20
Additional Information
Grigoriy Blekherman
Affiliation:
School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, Georgia 303320160
Email:
greg@math.gatech.edu
DOI:
http://dx.doi.org/10.1090/S089403472012007334
Received by editor(s):
December 11, 2010
Received by editor(s) in revised form:
August 12, 2011, and December 17, 2011
Published electronically:
March 15, 2012
Article copyright:
© Copyright 2012
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
