Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 

 

Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points


Author: Jacob Tsimerman
Journal: J. Amer. Math. Soc. 25 (2012), 1091-1117
MSC (2010): Primary 11G15
Published electronically: April 12, 2012
MathSciNet review: 2947946
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Shyr derived an analogue of Dirichlet's class number formula for arithmetic tori. We use this formula to derive a Brauer-Siegel formula for tori, relating the discriminant of a torus to the product of its regulator and class number. We apply this formula to derive asymptotics and lower bounds for Galois orbits of CM points in the Siegel modular variety $ A_{g,1}$. Specifically, we ask that the sizes of these orbits grow like a power of the discriminant of the underlying endomorphism algebra. We prove this unconditionally in the case $ g\leq 6$, and for all $ g$ under the Generalized Riemann Hypothesis for CM fields. Along the way we derive a general transfer principle for torsion in ideal class groups of number fields.


References [Enhancements On Off] (What's this?)

  • 1. Armand Brumer and Joseph H. Silverman, The number of elliptic curves over 𝐐 with conductor 𝐍, Manuscripta Math. 91 (1996), no. 1, 95–102. MR 1404420, 10.1007/BF02567942
  • 2. C. Chai and F. Oort, Abelian Varieties Isogenous to a Jacobian, http://www. math. upenn. edu/$ \sim $ chai/papers_ pdf/isogJac65. pdf, preprint, 2010
  • 3. Bas Edixhoven, On the André-Oort conjecture for Hilbert modular surfaces, Moduli of abelian varieties (Texel Island, 1999) Progr. Math., vol. 195, Birkhäuser, Basel, 2001, pp. 133–155. MR 1827018
  • 4. S. J. Edixhoven, B. J. J. Moonen, and F. Oort, Open problems in algebraic geometry, Bull. Sci. Math. 125 (2001), no. 1, 1–22. MR 1812812, 10.1016/S0007-4497(00)01075-7
  • 5. Jordan S. Ellenberg and Akshay Venkatesh, Reflection principles and bounds for class group torsion, Int. Math. Res. Not. IMRN 1 (2007), Art. ID rnm002, 18. MR 2331900, 10.1093/imrn/rnm002
  • 6. Frank Gerth III, Ranks of 3-class groups of non-Galois cubic fields, Acta Arith. 30 (1976), no. 4, 307–322. MR 0422198
  • 7. B. Klingler and A. Yafaev, The André-Oort conjecture, http://www. math. jussieu. fr/$ \sim $ klingler/papiers/KY12. pdf, preprint, 2008.
  • 8. Tadasi Nakayama, Cohomology of class field theory and tensor product modules. I, Ann. of Math. (2) 65 (1957), 255–267. MR 0090620
  • 9. Takashi Ono, On the Tamagawa number of algebraic tori, Ann. of Math. (2) 78 (1963), 47–73. MR 0156851
  • 10. Takashi Ono, Arithmetic of algebraic tori, Ann. of Math. (2) 74 (1961), 101–139. MR 0124326
  • 11. J. Pila, O-minimality and the André-Oort conjecture for $ \mathbb{C}^n$, http://www.maths.ox.ac.uk/system/files/PilaAOMML4. pdf, to appear in Annals of Math.
  • 12. Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, vol. 139, Academic Press, Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen. MR 1278263
  • 13. Goro Shimura, Abelian varieties with complex multiplication and modular functions, Princeton Mathematical Series, vol. 46, Princeton University Press, Princeton, NJ, 1998. MR 1492449
  • 14. Jih Min Shyr, On some class number relations of algebraic tori, Michigan Math. J. 24 (1977), no. 3, 365–377. MR 0491596
  • 15. E. Ullmo and A. Yafaev, Galois orbits and equidistribution of special subvarieties : towards the André-Oort conjecture. http://www.math.u-psud.fr/~ullmo/Prebublications/UllmoYafaev2(3)(2)(2).pdf
  • 16. E. Ullmo and A. Yafaev, Nombre de classes des tores de multiplication complexe et bornes inférieures pour orbites Galoisiennes de points spéciaux. preprint.
  • 17. Andrei Yafaev, A conjecture of Yves André’s, Duke Math. J. 132 (2006), no. 3, 393–407. MR 2219262, 10.1215/S0012-7094-06-13231-3
  • 18. Shou-Wu Zhang, Equidistribution of CM-points on quaternion Shimura varieties, Int. Math. Res. Not. 59 (2005), 3657–3689. MR 2200081, 10.1155/IMRN.2005.3657

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11G15

Retrieve articles in all journals with MSC (2010): 11G15


Additional Information

Jacob Tsimerman
Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000
Address at time of publication: Department of Mathematics, Faculty of Arts & Sciences, Harvard University, One Oxford Street, Cambridge MA 02138
Email: jacobt@math.harvard.edu

DOI: https://doi.org/10.1090/S0894-0347-2012-00739-5
Received by editor(s): May 29, 2011
Received by editor(s) in revised form: February 27, 2012, and March 23, 2012
Published electronically: April 12, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.