Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

Global rigidity of higher rank Anosov actions on tori and nilmanifolds


Authors: David Fisher, Boris Kalinin and Ralf Spatzier; with an appendix by James F. Davis
Journal: J. Amer. Math. Soc. 26 (2013), 167-198
MSC (2010): Primary 37C15, 37C85, 37D20, 53C24; Secondary 42B05
DOI: https://doi.org/10.1090/S0894-0347-2012-00751-6
Published electronically: August 20, 2012
MathSciNet review: 2983009
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that sufficiently irreducible Anosov actions of higher rank abelian groups on tori and nilmanifolds are $ C^{\infty }$-conjugate to affine actions.


References [Enhancements On Off] (What's this?)

  • 1. Auslander, L.; Green, L.; Hahn, F. Flows on homogeneous spaces. With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. Annals of Mathematics Studies, No. 53, Princeton University Press, Princeton, N.J., 1963.
  • 2. Barreira, L.; Pesin, Y. Nonuniform hyperbolicity. Dynamics of systems with nonzero Lyapunov exponents. Encyclopedia of Mathematics and its Applications, 115. Cambridge University Press, Cambridge, 2007. MR 2348606 (2010c:37067)
  • 3. Blanksby, P. E.; Montgomery, H. L. Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355-369. MR 0296021 (45:5082)
  • 4. Damjanović, D.; Katok, A. Local Rigidity of Partially Hyperbolic Actions I. KAM Method and $ \mathbb{Z}^{k}$ Actions on the Torus, Annals of Mathematics (2) 172 (2010), no. 3, 1805-1858. MR 2726100 (2011j:37046)
  • 5. Davis, J. F.; Kirk, P. Lecture notes in algebraic topology, Graduate Studies in Mathematics, 35, American Mathematical Society (2001). MR 1841974 (2002f:55001)
  • 6. Davis, J. F.; Petrosyan, N. Manifolds and Poincaré complexes, in preparation.
  • 7. Farrell, F. T.; Jones, L. E. Anosov diffeomorphisms constructed from $ \pi _{1}\,{\textup {Diff}}\,(S^{n})$. Topology 17 (1978), no. 3, 273-282. MR 508890 (81f:58030)
  • 8. F. T. Farrell, A. Gogolev. Anosov diffeomorphisms constructed from $ \pi _k ({\textup {Diff}}(S^n))$, preprint.
  • 9. Fisher, D.; Margulis, G. Almost isometric actions, property $ (T)$, and local rigidity. Invent. Math. 162 (2005), no. 1, 19-80. MR 2198325 (2006m:53063)
  • 10. Fisher, D.; Margulis, G. Local rigidity of affine actions of higher rank groups and lattices, Ann. of Math. (2) 170 (2009), no. 1, 67-122. MR 2521112 (2011a:53065)
  • 11. Fisher, D.; Kalinin, B.; Spatzier, R. Totally nonsymplectic Anosov actions on tori and nilmanifolds. Geom. Topol. 15 (2011), no. 1, 191-216. MR 2776843 (2012b:37073)
  • 12. Franks, J. Anosov diffeomorphisms on tori. Transactions of the AMS, 145 (1969), 117-124. MR 0253352 (40:6567)
  • 13. Gogolev, A. Diffeomorphisms Hölder conjugate to Anosov diffeomorphisms, Ergodic Theory and Dynamical Systems, 30 (2010), no. 2, 441-456. MR 2599887 (2011g:37047)
  • 14. Gorodnik, A.; Spatzier, R. Exponential Mixing of Nilmanifold Automorphisms, preprint in preparation.
  • 15. Gorodnik, A.; Spatzier, R. Mixing Properties of Commuting Nilmanifold Automorphisms, preprint in preparation.
  • 16. Green, B.; Tao, T. The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math. (2) 175 (2012), no. 2, 465-540. MR 2877065
  • 17. Hirsch, M. W.; Mazur, B., Smoothings of piecewise linear manifolds, Annals of Mathematics Studies, No. 80., Princeton University Press (1974). MR 0415630 (54:3711)
  • 18. Hirsch, M.; Pugh, C.; Shub, M. Invariant Manifolds. Springer-Verlag, New York, 1977. MR 0501173 (58:18595)
  • 19. Hörmander, L. The Analysis of Linear Partial Differential Operators I, Springer-Verlag Classics in Mathematics, 1990. MR 1996773
  • 20. Kalinin, B.; Katok, A. Invariant measures for actions of higher rank abelian groups. Proceedings of Symposia in Pure Mathematics. Volume 69, (2001), 593-637. MR 1858547 (2002i:37035)
  • 21. Kalinin, B.; Katok, A. Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori. Journal of Modern Dynamics, Vol. 1 (2007), no. 1, 123 - 146. MR 2261075 (2008h:37023)
  • 22. Kalinin, B.; Sadovskaya, V. Global Rigidity for TNS Anosov $ \mathbb{Z}^k$ Actions. Geometry and Topology, 10 (2006), 929-954. MR 2240907 (2007e:37019)
  • 23. Kalinin, B.; Sadovskaya, V. On classification of resonance-free Anosov $ \mathbb{Z}^k$ actions. Michigan Mathematical Journal, 55 (2007), no. 3, 651-670. MR 2372620 (2009i:37070)
  • 24. Kalinin, B.; Spatzier, R. On the classification of Cartan actions. Geometric and Functional Analysis, 17 (2007), 468-490. MR 2322492 (2008i:37054)
  • 25. Katok, A.; Hasselblatt, B. Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications, 54. Cambridge University Press, Cambridge, 1995. MR 1326374 (96c:58055)
  • 26. Katok, A.; Lewis, J. Local rigidity for certain groups of toral automorphisms. Israel J. of Math. 75 (1991), 203-241. MR 1164591 (93g:58076)
  • 27. Katok, A.; Spatzier, R. First Cohomology of Anosov Actions of Higher Rank Abelian Groups and Applications to Rigidity. Publ. Math. IHES 79 (1994), 131-156. MR 1307298 (96c:58132)
  • 28. Katznelson, Y. An Introduction to Harmonic Analysis, Dover, 1968. MR 0248482 (40:1734)
  • 29. Kirby, R. C.; Siebenmann, L. C., Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88., Princeton University Press (1977). MR 0645390 (58:31082)
  • 30. Lind, D. Dynamical properties of quasihyperbolic toral automorphisms. Ergodic Theory Dynamical Systems, 2 (1982), no. 1, 49-68. MR 684244 (84g:28017)
  • 31. Manning, A.. There are no new Anosov diffeomorphisms on tori. Amer. J. Math., 96 (1974), 422-429. MR 0358865 (50:11324)
  • 32. Margulis, G.; Qian, N. Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices. Ergodic Theory Dynam. Systems, 21 (2001), 121-164. MR 1826664 (2003a:22019)
  • 33. Raghunathan, M. S., Discrete subgroups of Lie groups, Springer-Verlag (1972). MR 0507234 (58:22394a)
  • 34. Rodriguez Hertz, F. Global rigidity of certain abelian actions by toral automorphisms, Journal of Modern Dynamics, 1, N3 (2007), 425-442. MR 2318497 (2008f:37063)
  • 35. Rauch, J.; Taylor, M. Regularity of functions smooth along foliations, and elliptic regularity, Journal of Functional Analysis, Volume 225, Issue 1 (2005). MR 2149919 (2006e:35065)
  • 36. Schreiber, S. J. On growth rates of subadditive functions for semi-flows, J. Differential Equations, 148 (1998), 334-350. MR 1643183 (2000a:37004)
  • 37. Starkov, A. N. The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus. J. Math. Sci. 95 (1999), no. 5, 2576-2582. MR 1712745 (2000m:37005)
  • 38. Wall, C. T. C. Surgery on compact manifolds. London Mathematical Society Monographs, No. 1. Academic Press, London-New York, 1970. x+280 pp. MR 0431216 (55:4217)
  • 39. Walters, P. Conjugacy Properties of Affine Transformations of Nilmanifolds, Mathematical Systems Theory, 4 (1970), no. 4, 327-333. MR 0414830 (54:2922)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 37C15, 37C85, 37D20, 53C24, 42B05

Retrieve articles in all journals with MSC (2010): 37C15, 37C85, 37D20, 53C24, 42B05


Additional Information

David Fisher
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email: fisherdm@indiana.edu

Boris Kalinin
Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
Email: bvk102@psu.edu

Ralf Spatzier
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Email: spatzier@umich.edu

James F. Davis
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
Email: jfdavis@indiana.edu

DOI: https://doi.org/10.1090/S0894-0347-2012-00751-6
Received by editor(s): October 3, 2011
Received by editor(s) in revised form: November 17, 2011, and May 17, 2012
Published electronically: August 20, 2012
Additional Notes: The authors were supported in part by NSF grants DMS-0643546, DMS-1101150 and DMS-0906085
The contributing author was supported in part by NSF grant DMS-1210991
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society