Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On the cohomology of compact unitary group Shimura varieties at ramified split places


Authors: Peter Scholze and Sug Woo Shin
Journal: J. Amer. Math. Soc. 26 (2013), 261-294
MSC (2010): Primary 11F70, 11F80, 11G18, 11R39, 11S37; Secondary 14G35, 11F72, 22E50, 22E55
DOI: https://doi.org/10.1090/S0894-0347-2012-00752-8
Published electronically: August 20, 2012
MathSciNet review: 2983012
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we prove results about the cohomology of compact unitary group Shimura varieties at split places. In nonendoscopic cases, we are able to give a full description of the cohomology, after restricting to integral Hecke operators at $ p$ on the automorphic side. We allow arbitrary ramification at $ p$; even the PEL data may be ramified. This gives a description of the semisimple local Hasse-Weil zeta function in these cases.

We also treat cases of nontrivial endoscopy. For this purpose, we give a general stabilization of the expression given in the article https://doi.org/ 10.1090/S0894-0347-2012-00753-X, following the stabilization given by Kottwitz. This introduces endoscopic transfers of the functions $ \phi _{\tau ,h}$ introduced in the above article. We state a general conjecture relating these endoscopic transfers with Langlands parameters.

We verify this conjecture in all cases of EL type and deduce new results about the endoscopic part of the cohomology of Shimura varieties. This allows us to simplify the construction of Galois representations attached to conjugate self-dual regular algebraic cuspidal automorphic representations of $ \mathrm {GL}_n$.


References [Enhancements On Off] (What's this?)

  • 1. J. Arthur.
    A note on $ L$-packets.
    Pure Appl. Math. Q., 2(1, Special Issue: In honor of John H. Coates. Part 1):199-217, 2006. MR 2217572 (2006k:22014)
  • 2. J. Arthur.
    The endoscopic classification of representations: orthogonal and symplectic groups.
    2011.
  • 3. J. Arthur and L. Clozel.
    Simple algebras, base change, and the advanced theory of the trace formula, volume 120 of Annals of Mathematics Studies.
    Princeton University Press, Princeton, NJ, 1989. MR 1007299 (90m:22041)
  • 4. T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor.
    Local-global compatibility for $ l=p$. I.
    preprint, http://math.ias.edu/~rtaylor.
  • 5. T. Barnet-Lamb, T. Gee, D. Geraghty, and R. Taylor.
    Local-global compatibility for $ l=p$. II.
    preprint, http://math.ias.edu/~rtaylor.
  • 6. J. Bernstein, P. Deligne, and D. Kazhdan.
    Trace Paley-Wiener theorem for reductive $ p$-adic groups.
    J. Analyse Math., 47:180-192, 1986. MR 874050 (88g:22016)
  • 7. J. N. Bernstein.
    Le ``centre'' de Bernstein.
    In Representations of reductive groups over a local field, Travaux en Cours, pages 1-32. Hermann, Paris, 1984.
    Edited by P. Deligne. MR 771671 (86e:22028)
  • 8. D. Blasius and J. D. Rogawski.
    Zeta functions of Shimura varieties.
    In Motives (Seattle, WA, 1991), volume 55 of Proc. Sympos. Pure Math., pages 525-571. Amer. Math. Soc., Providence, RI, 1994. MR 1265563 (95e:11051)
  • 9. K. Buzzard and T. Gee.
    The conjectural connections between automorphic representations and Galois representations.
    arXiv:1009.0785.
  • 10. A. Caraiani.
    Local-global compatibility and the action of monodromy on nearby cycles.
    preprint, arXiv:1010:2188.
  • 11. G. Chenevier and M. Harris.
    Construction of automorphic Galois representations, II.
    preprint, http://fa.institut.math.jussieu.fr/node/45.
  • 12. L. Clozel.
    Purity reigns supreme.

    http://www.institut.math.jussieu.fr/projets/fa/bpFiles/Clozel2.pdf.
  • 13. L. Clozel.
    Représentations galoisiennes associées aux représentations automorphes autoduales de $ {\rm GL}(n)$.
    Inst. Hautes Études Sci. Publ. Math., (73):97-145, 1991. MR 1114211 (92i:11055)
  • 14. L. Clozel, M. Harris, and J.-P. Labesse.
    Construction of automorphic Galois representations, I.
    In On the stabilization of the trace formula, volume 1 of Stab. Trace Formula Shimura Var. Arith. Appl., pages 497-527. Int. Press, Somerville, MA, 2011. MR 2742611
  • 15. L. Fargues.
    Cohomologie des espaces de modules de groupes $ p$-divisibles et correspondances de Langlands locales.
    Astérisque, 291:1-200, 2004. MR 2074714 (2005g:11110b)
  • 16. M. Harris and J.-P. Labesse.
    Conditional base change for unitary groups.
    Asian J. Math., 8(4):653-683, 2004. MR 2127943 (2006g:11098)
  • 17. M. Harris and R. Taylor.
    The geometry and cohomology of some simple Shimura varieties, volume 151 of Annals of Mathematics Studies.
    Princeton University Press, Princeton, NJ, 2001.
    With an appendix by Vladimir G. Berkovich. MR 1876802 (2002m:11050)
  • 18. M. Harris and R. Taylor.
    The geometry and cohomology of some simple Shimura varieties, volume 151 of Annals of Mathematics Studies.
    Princeton University Press, Princeton, NJ, 2001.
    With an appendix by Vladimir G. Berkovich. MR 1876802 (2002m:11050)
  • 19. G. Henniart.
    Une preuve simple des conjectures de Langlands pour $ GL(n)$ sur un corps $ p$-adiques.
    Invent. Math., 139:439-455, 2000. MR 1738446 (2001e:11052)
  • 20. D. Kazhdan and Y. Varshavsky.
    Endoscopic decomposition of certain depth zero representations.
    In Studies in Lie theory, volume 243 of Progr. Math., pages 223-301. Birkhäuser Boston, Boston, MA, 2006. MR 2214251 (2007e:22008)
  • 21. R. Kottwitz.
    Shimura varieties and twisted orbital integrals.
    Math. Ann., 269:287-300, 1984. MR 761308 (87b:11047)
  • 22. R. Kottwitz.
    Stable trace formula: Cuspidal tempered terms.
    Duke Math., 51:611-650, 1984. MR 757954 (85m:11080)
  • 23. R. Kottwitz.
    Stable trace formula: Elliptic singular terms.
    Math. Ann., 275:365-399, 1986. MR 858284 (88d:22027)
  • 24. R. Kottwitz.
    On the $ \lambda $-adic representations associated to some simple Shimura varieties.
    Invent. Math., 108:653-665, 1992. MR 1163241 (93f:11046)
  • 25. R. Kottwitz and M. Rapoport.
    On the existence of $ F$-crystals.
    Comment. Math. Helv., 78(1):153-184, 2003. MR 1966756 (2004c:11221)
  • 26. R. Kottwitz and D. Shelstad.
    Foundations of twisted endoscopy.
    Astérisque, no. 255, 1999, vi $ +$ 190 pp. MR 1687096 (2000k:22024)
  • 27. R. E. Kottwitz.
    Isocrystals with additional structure.
    Compositio Math., 56(2):201-220, 1985. MR 809866 (87i:14040)
  • 28. R. E. Kottwitz.
    Shimura varieties and $ \lambda $-adic representations.
    In Automorphic forms, Shimura varieties, and $ L$-functions, Vol. I (Ann Arbor, MI, 1988), volume 10 of Perspect. Math., pages 161-209. Academic Press, Boston, MA, 1990. MR 1044820 (92b:11038)
  • 29. R. E. Kottwitz.
    On the $ \lambda $-adic representations associated to some simple Shimura varieties.
    Invent. Math., 108(3):653-665, 1992. MR 1163241 (93f:11046)
  • 30. R. E. Kottwitz.
    Points on some Shimura varieties over finite fields.
    J. Amer. Math. Soc., 5(2):373-444, 1992. MR 1124982 (93a:11053)
  • 31. R. E. Kottwitz.
    Isocrystals with additional structure. II.
    Compositio Math., 109(3):255-339, 1997. MR 1485921 (99e:20061)
  • 32. K.-W. Lan.
    Arithmetic compactifications of PEL-type Shimura varieties.
    ProQuest LLC, Ann Arbor, MI, 2008.
    Thesis (Ph.D.)-Harvard University. MR 2711676
  • 33. R. Langlands.
    Stable conjugacy: definitions and lemmas.
    Can. J. Math., 31:700-725, 1979. MR 540901 (82j:10054)
  • 34. R. Langlands and D. Shelstad.
    On the definition of transfer factors.
    Math. Ann., 278:219-271, 1987. MR 909227 (89c:11172)
  • 35. S. Morel.
    On the cohomology of certain noncompact Shimura varieties.
    Number 173 in Princeton University Press. Annals of Mathematics Studies, Princeton, New Jersey, 2010. MR 2567740 (2011b:11073)
  • 36. B. C. Ngô.
    Le lemme fondamental pour les algèbres de Lie.
    Publ. Math. Inst. Hautes Études Sci., (111):1-169, 2010. MR 2653248 (2011h:22011)
  • 37. M. Rapoport.
    A guide to the reduction modulo $ p$ of Shimura varieties.
    Astérisque, (298):271-318, 2005.
    Automorphic forms. I. MR 2141705 (2006c:11071)
  • 38. M. Rapoport and M. Richartz.
    On the classification and specialization of $ F$-isocrystals with additional structure.
    Compositio Math., 103(2):153-181, 1996. MR 1411570 (98c:14015)
  • 39. P. Scholze.
    The Langlands-Kottwitz approach for some simple Shimura varieties.
    arXiv:1003.2451, to appear in Invent. Math.
  • 40. P. Scholze.
    The Langlands-Kottwitz method and deformation spaces of $ p$-divisible groups.
    arXiv:1110.0230.
  • 41. P. Scholze.
    A new approach to the local Langlands correspondence for $ \mathrm {GL}_n$ over $ p$-adic fields.
    arXiv:1010.1540, to appear in Invent. Math.
  • 42. F. Shahidi.
    A proof of Langlands' conjecture on Plancherel measures; complementary series for $ p$-adic groups.
    Ann. of Math. (2), 132(2):273-330, 1990. MR 1070599 (91m:11095)
  • 43. S. W. Shin.
    Automorphic Plancherel density theorem.
    to appear in Israel J. of Math.
  • 44. S. W. Shin.
    Galois representations arising from some compact Shimura varieties.
    Annals of Math., 173:1645-1741, 2011. MR 2800722
  • 45. R. Taylor and T. Yoshida.
    Compatibility of local and global Langlands correspondences.
    J. Amer. Math. Soc., 20(2):467-493, 2007. MR 2276777 (2007k:11193)
  • 46. E. Viehmann and T. Wedhorn.
    Ekedahl-Oort and Newton strata for Shimura varieties of PEL type.
    2010.
  • 47. D. A. Vogan, Jr.
    The local Langlands conjecture.
    In Representation theory of groups and algebras, volume 145 of Contemp. Math., pages 305-379. Amer. Math. Soc., Providence, RI, 1993. MR 1216197 (94e:22031)
  • 48. J.-L. Waldspurger.
    Le lemme fondamental implique le transfert.
    Comp. Math., 105(2):153-236, 1997. MR 1440722 (98h:22023)
  • 49. J.-L. Waldspurger.
    L'endoscopie tordue n'est pas si tordue.
    Mem. Amer. Math. Soc., 194(908):x+261, 2008. MR 2418405 (2011d:22020)
  • 50. P.-J. White.
    Tempered automorphic representations of the unitary group.

    arXiv: 1106.1127v1 [math.NT].

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11F70, 11F80, 11G18, 11R39, 11S37, 14G35, 11F72, 22E50, 22E55

Retrieve articles in all journals with MSC (2010): 11F70, 11F80, 11G18, 11R39, 11S37, 14G35, 11F72, 22E50, 22E55


Additional Information

Peter Scholze
Affiliation: Mathematisches Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

Sug Woo Shin
Affiliation: Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 – and – Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722, Republic of Korea

DOI: https://doi.org/10.1090/S0894-0347-2012-00752-8
Received by editor(s): November 9, 2011
Received by editor(s) in revised form: July 23, 2012
Published electronically: August 20, 2012
Additional Notes: This work was written while the first author was a Clay Research Fellow.
The second author’s work was supported by the National Science Foundation during his stay at the Institute for Advanced Study under agreement No. DMS-0635607. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society