Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

The Langlands-Kottwitz method and deformation spaces of $ p$-divisible groups


Author: Peter Scholze
Journal: J. Amer. Math. Soc. 26 (2013), 227-259
MSC (2010): Primary 11G18, 14G22, 14L05; Secondary 14G35, 14B12
DOI: https://doi.org/10.1090/S0894-0347-2012-00753-X
Published electronically: August 16, 2012
MathSciNet review: 2983011
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We extend the results of Kottwitz on points of Shimura varieties over finite fields to cases of bad reduction. The ``test function'' whose twisted orbital integrals appear in the final expression is defined geometrically using deformation spaces of $ p$-divisible groups.


References [Enhancements On Off] (What's this?)

  • 1. P. Berthelot.
    Cohomologie rigide et cohomologie rigide à support propre.
    http://perso.univ-rennes1.fr/pierre.berthelot/publis/Cohomologie_Rigide_I.pdf.
  • 2. G. Faltings.
    Group schemes with strict $ \mathcal O$-action.
    Mosc. Math. J., 2(2):249-279, 2002.
    Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1944507 (2004i:14052)
  • 3. L. Fargues.
    Cohomologie des espaces de modules de groupes $ p$-divisibles et correspondances de Langlands locales.
    Astérisque, (291):1-199, 2004.
    Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales. MR 2074714 (2005g:11110b)
  • 4. D. Gaitsgory.
    Construction of central elements in the affine Hecke algebra via nearby cycles.
    Invent. Math., 144(2):253-280, 2001. MR 1826370 (2002d:14072)
  • 5. U. Görtz.
    Topological flatness of local models in the ramified case.
    Math. Z., 250(4):775-790, 2005. MR 2180374 (2006h:11067)
  • 6. T. Haines and B. C. Ngô.
    Nearby cycles for local models of some Shimura varieties.
    Compositio Math., 133(2):117-150, 2002. MR 1923579 (2003h:11065)
  • 7. T. Haines and M. Rapoport.
    Shimura varieties with $ \Gamma _1(p)$-level structure.
    in preparation.
  • 8. T. J. Haines.
    Introduction to Shimura varieties with bad reduction of parahoric type.
    In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc., pages 583-642. Amer. Math. Soc., Providence, RI, 2005. MR 2192017 (2006m:11085)
  • 9. R. Huber.
    Étale cohomology of rigid analytic varieties and adic spaces.
    Aspects of Mathematics, E30. Friedr. Vieweg & Sohn, Braunschweig, 1996. MR 1734903 (2001c:14046)
  • 10. R. Huber.
    A comparison theorem for $ l$-adic cohomology.
    Compositio Math., 112(2):217-235, 1998. MR 1626021 (99k:14033)
  • 11. R. Huber.
    A finiteness result for direct image sheaves on the étale site of rigid analytic varieties.
    J. Algebraic Geom., 7(2):359-403, 1998. MR 1620118 (99h:14021)
  • 12. R. Huber.
    A finiteness result for the compactly supported cohomology of rigid analytic varieties.
    J. Algebraic Geom., 7(2):313-357, 1998. MR 1620114 (99h:14020)
  • 13. L. Illusie.
    Déformations de groupes de Barsotti-Tate (d'après A. Grothendieck).
    Astérisque, (127):151-198, 1985.
    Seminar on arithmetic bundles: the Mordell conjecture (Paris, 1983/84). MR 801922
  • 14. R. E. Kottwitz.
    Isomorphism classes of elliptic curves within an isogeny class over a finite field, unpublished notes.
  • 15. R. E. Kottwitz.
    Shimura varieties and twisted orbital integrals.
    Math. Ann., 269(3):287-300, 1984. MR 761308 (87b:11047)
  • 16. R. E. Kottwitz.
    Shimura varieties and $ \lambda $-adic representations.
    In Automorphic forms, Shimura varieties, and $ L$-functions, Vol. I (Ann Arbor, MI, 1988), volume 10 of Perspect. Math., pages 161-209. Academic Press, Boston, MA, 1990. MR 1044820 (92b:11038)
  • 17. R. E. Kottwitz.
    Points on some Shimura varieties over finite fields.
    J. Amer. Math. Soc., 5(2):373-444, 1992. MR 1124982 (93a:11053)
  • 18. K.-W. Lan.
    Arithmetic compactifications of PEL-type Shimura varieties.
    ProQuest LLC, Ann Arbor, MI, 2008.
    Thesis (Ph.D.)-Harvard University. MR 2711676
  • 19. R. P. Langlands.
    Modular forms and $ \ell $-adic representations.
    Lecture Notes in Math., Vol. 349, 1973, pages 361-500. MR 0354617 (50:7095)
  • 20. Y. Mieda.
    On $ l$-independence for the étale cohomology of rigid spaces over local fields.
    Compos. Math., 143(2):393-422, 2007. MR 2309992 (2008d:14030)
  • 21. G. Pappas and M. Rapoport.
    Local models in the ramified case. I. The EL-case.
    J. Algebraic Geom., 12(1):107-145, 2003. MR 1948687 (2003k:11099)
  • 22. G. Pappas and W. Zhu.
    Local models of Shimura varieties and a conjecture of Kottwitz.
    arXiv:1110.5588.
  • 23. M. Rapoport and T. Zink.
    Period spaces for $ p$-divisible groups, volume 141 of Annals of Mathematics Studies.
    Princeton University Press, 1996. MR 1393439 (97f:14023)
  • 24. P. Scholze.
    The Langlands-Kottwitz approach for some simple Shimura varieties.
    arXiv:1003.2451, to appear in Invent. Math.
  • 25. P. Scholze.
    A new approach to the local Langlands correspondence for $ \mathrm {GL}_n$ over $ p$-adic fields.
    arXiv:1010.1540, to appear in Invent. Math.
  • 26. P. Scholze.
    The Langlands-Kottwitz approach for the modular curve.
    Int. Math. Res. Not. IMRN, (15):3368-3425, 2011. MR 2822177
  • 27. P. Scholze and S. W. Shin.
    On the cohomology of compact unitary group Shimura varieties at ramified split places.
    arXiv:1110.0232.
  • 28. S. W. Shin.
    Galois representations arising from some compact Shimura varieties.
    Annals of Mathematics, (173):1645-1741, 2011. MR 2800722
  • 29. Y. Varshavsky.
    Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara.
    Geom. Funct. Anal., 17(1):271-319, 2007. MR 2306659 (2008d:14032)
  • 30. T. Wedhorn.
    The dimension of Oort strata of Shimura varieties of PEL-type.
    In Moduli of abelian varieties (Texel Island, 1999), volume 195 of Progr. Math., pages 441-471. Birkhäuser, Basel, 2001. MR 1827029 (2002b:14029)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11G18, 14G22, 14L05, 14G35, 14B12

Retrieve articles in all journals with MSC (2010): 11G18, 14G22, 14L05, 14G35, 14B12


Additional Information

Peter Scholze
Affiliation: Mathematisches Institut der Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Email: scholze@math.uni-bonn.de

DOI: https://doi.org/10.1090/S0894-0347-2012-00753-X
Received by editor(s): November 9, 2011
Received by editor(s) in revised form: July 23, 2012
Published electronically: August 16, 2012
Additional Notes: This paper was written while the author was a Clay Research Fellow.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society