Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

Symbolic dynamics for surface diffeomorphisms with positive entropy


Author: Omri M. Sarig
Journal: J. Amer. Math. Soc. 26 (2013), 341-426
MSC (2010): Primary 37D25; Secondary 37D35
DOI: https://doi.org/10.1090/S0894-0347-2012-00758-9
Published electronically: November 26, 2012
MathSciNet review: 3011417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a $ C^{1+\varepsilon }$ diffeomorphism on a compact smooth surface with positive topological entropy $ h$. For every $ 0<\delta <h$, we construct an invariant Borel set $ E$ and a countable Markov partition for the restriction of $ f$ to $ E$ in such a way that $ E$ has full measure with respect to every ergodic invariant probability measure with entropy greater than $ \delta $. The following results follow: $ f$ has at most countably many ergodic measures of maximal entropy (a conjecture of J. Buzzi), and in the case when $ f$ is $ C^\infty $, $ \limsup \limits _{n\to \infty }e^{-n h}\char93 \{x:f^n(x)=x\}>0$ (a conjecture of A. Katok).


References [Enhancements On Off] (What's this?)

  • [AW] R. L. Adler and B. Weiss, Entropy, a complete metric invariant for automorphisms of the torus, Proc. Nat. Acad. Sci. U.S.A. 57 (1967), 1573-1576. MR 0212156 (35 #3031)
  • [BP] Luis Barreira and Yakov Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge, 2007. Dynamics of systems with nonzero Lyapunov exponents. MR 2348606 (2010c:37067)
  • [BY] Michael Benedicks and Lai-Sang Young, Markov extensions and decay of correlations for certain Hénon maps, Astérisque 261 (2000), xi, 13-56 (English, with English and French summaries). Géométrie complexe et systèmes dynamiques (Orsay, 1995). MR 1755436 (2001g:37030)
  • [Be] Kenneth Richard Berg, On the conjugacy problem for $ K$-systems, ProQuest LLC, Ann Arbor, MI, 1967. Thesis (Ph.D.)-University of Minnesota. MR 2616688
  • [Brg] P. Berger: Properties of the maximal entropy measure and geometry of Hénon attractors. arXiv:1202.2822v1 (2012), 53 pages.
  • [B1] Rufus Bowen, Markov partitions for Axiom $ {\rm A}$ diffeomorphisms, Amer. J. Math. 92 (1970), 725-747. MR 0277003 (43 #2740)
  • [B2] Rufus Bowen, Periodic points and measures for Axiom $ A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377-397. MR 0282372 (43 #8084)
  • [B3] Rufus Bowen, On Axiom A diffeomorphisms, American Mathematical Society, Providence, R.I., 1978. Regional Conference Series in Mathematics, No. 35. MR 0482842 (58 #2888)
  • [B4] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Second revised edition, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 2008. With a preface by David Ruelle; Edited by Jean-René Chazottes. MR 2423393 (2009d:37038)
  • [BD] Mike Boyle and Tomasz Downarowicz, The entropy theory of symbolic extensions, Invent. Math. 156 (2004), no. 1, 119-161. MR 2047659 (2005d:37015), https://doi.org/10.1007/s00222-003-0335-2
  • [BFF] Mike Boyle, Doris Fiebig, and Ulf Fiebig, Residual entropy, conditional entropy and subshift covers, Forum Math. 14 (2002), no. 5, 713-757. MR 1924775 (2003g:37024), https://doi.org/10.1515/form.2002.031
  • [Bri] M. Brin: Hölder continuity of invariant distributions, in Smooth Ergodic Theory and its Applications, edited by A. Katok, R. de la Llave, Ya. Pesin, and H. Weiss, Proc. Symp. Pure Math. 69, AMS 2001, pp. 99-101.
  • [Bru] H. Bruin, Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Comm. Math. Phys. 168 (1995), no. 3, 571-580. MR 1328254 (96m:58134)
  • [BT] Henk Bruin and Mike Todd, Markov extensions and lifting measures for complex polynomials, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 743-768. MR 2322177 (2008e:37045), https://doi.org/10.1017/S0143385706000976
  • [BS] L. A. Bunimovich and Ya. G. Sinaĭ, Markov partitions for dispersed billiards, Comm. Math. Phys. 78 (1980/81), no. 2, 247-280. MR 597749 (82e:58059)
  • [BSC] L. A. Bunimovich, Ya. G. Sinaĭ, and N. I. Chernov, Markov partitions for two-dimensional hyperbolic billiards, Uspekhi Mat. Nauk 45 (1990), no. 3(273), 97-134, 221 (Russian); English transl., Russian Math. Surveys 45 (1990), no. 3, 105-152. MR 1071936 (91g:58155), https://doi.org/10.1070/RM1990v045n03ABEH002355
  • [Bur] David Burguet, $ \mathcal {C}^2$ surface diffeomorphisms have symbolic extensions, Invent. Math. 186 (2011), no. 1, 191-236. MR 2836054 (2012k:37049), https://doi.org/10.1007/s00222-011-0317-8
  • [Bu1] Jérôme Buzzi, Intrinsic ergodicity of smooth interval maps, Israel J. Math. 100 (1997), 125-161. MR 1469107 (99g:58071), https://doi.org/10.1007/BF02773637
  • [Bu2] Jérôme Buzzi, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112 (1999), 357-380. MR 1714974 (2000m:37008), https://doi.org/10.1007/BF02773488
  • [Bu3] Jérôme Buzzi, Subshifts of quasi-finite type, Invent. Math. 159 (2005), no. 2, 369-406. MR 2116278 (2005i:37013), https://doi.org/10.1007/s00222-004-0392-1
  • [Bu4] Jérôme Buzzi, Maximal entropy measures for piecewise affine surface homeomorphisms, Ergodic Theory Dynam. Systems 29 (2009), no. 6, 1723-1763. MR 2563090 (2010i:37013), https://doi.org/10.1017/S0143385708000953
  • [Bu5] Jérôme Buzzi, Puzzles of quasi-finite type, zeta functions and symbolic dynamics for multi-dimensional maps, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 3, 801-852 (English, with English and French summaries). MR 2680817 (2011f:37026)
  • [DN] Tomasz Downarowicz and Sheldon Newhouse, Symbolic extensions and smooth dynamical systems, Invent. Math. 160 (2005), no. 3, 453-499. MR 2178700 (2006j:37021), https://doi.org/10.1007/s00222-004-0413-0
  • [FS] A. Fathi and M. Shub, Some dynamics of pseudo-Anosov diffeomorphisms, Astérique 66-67 (1979), 181-207.
  • [G] T. N. T. Goodman, Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176-180. MR 0289746 (44 #6934)
  • [Gu1] B. M. Gurevič, Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR 187 (1969), 715-718 (Russian). MR 0263162 (41 #7767)
  • [Gu2] B. M. Gurevič, Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR 192 (1970), 963-965 (Russian). MR 0268356 (42 #3254)
  • [Hof1] Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Israel J. Math. 34 (1979), no. 3, 213-237 (1980). MR 570882 (82c:28039a), https://doi.org/10.1007/BF02760884
  • [Hof2] Franz Hofbauer, The structure of piecewise monotonic transformations, Ergodic Theory Dynamical Systems 1 (1981), no. 2, 159-178. MR 661817 (83k:58065)
  • [IT] Godofredo Iommi and Mike Todd, Natural equilibrium states for multimodal maps, Comm. Math. Phys. 300 (2010), no. 1, 65-94. MR 2725183 (2011m:37048), https://doi.org/10.1007/s00220-010-1112-x
  • [Kal] Vadim Yu. Kaloshin, Generic diffeomorphisms with superexponential growth of number of periodic orbits, Comm. Math. Phys. 211 (2000), no. 1, 253-271. MR 1757015 (2001e:37035), https://doi.org/10.1007/s002200050811
  • [K1] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 51 (1980), 137-173. MR 573822 (81i:28022)
  • [K2] Anatole Katok, Nonuniform hyperbolicity and structure of smooth dynamical systems, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 1245-1253. MR 804774 (87h:58173)
  • [K3] Anatole Katok, Fifty years of entropy in dynamics: 1958-2007, J. Mod. Dyn. 1 (2007), no. 4, 545-596. MR 2342699 (2008i:37001), https://doi.org/10.3934/jmd.2007.1.545
  • [KH] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374 (96c:58055)
  • [KM] A. Katok and L. Mendoza, Dynamical systems with non-uniformly hyperbolic behavior, Supplement to ``Introduction to the modern theory of dynamical systems.'' Cambridge UP (1995), 659-700. (See [KH].)
  • [Ke1] Gerhard Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), no. 2-3, 183-200. MR 1026617 (91b:28011), https://doi.org/10.1007/BF01308670
  • [Ke2] G. Keller, Markov extensions, zeta functions, and Fredholm theory for piecewise invertible dynamical systems, Trans. Amer. Math. Soc. 314 (1989), no. 2, 433-497. MR 1005524 (91c:58062), https://doi.org/10.2307/2001395
  • [Ki] Bruce P. Kitchens, Symbolic dynamics, Universitext, Springer-Verlag, Berlin, 1998. One-sided, two-sided and countable state Markov shifts. MR 1484730 (98k:58079)
  • [KT] Tyll Krüger and Serge Troubetzkoy, Markov partitions and shadowing for non-uniformly hyperbolic systems with singularities, Ergodic Theory Dynam. Systems 12 (1992), no. 3, 487-508. MR 1182660 (93h:58116), https://doi.org/10.1017/S014338570000691X
  • [M] Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655 (2004m:37049)
  • [N] Sheldon E. Newhouse, Continuity properties of entropy, Ann. of Math. (2) 129 (1989), no. 2, 215-235. MR 986792 (90f:58108), https://doi.org/10.2307/1971492
  • [Os] V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179-210 (Russian). MR 0240280 (39 #1629)
  • [PP] William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356 (92f:58141)
  • [P] Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 6, 1332-1379, 1440 (Russian). MR 0458490 (56 #16690)
  • [PSZ] Ya. B. Pesin, S. Senti, and K. Zhang, Lifting measures to inducing schemes, Ergodic Theory Dynam. Systems 28 (2008), no. 2, 553-574. MR 2408392 (2009f:37004), https://doi.org/10.1017/S0143385707000806
  • [Ru] David Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), no. 1, 83-87. MR 516310 (80f:58026), https://doi.org/10.1007/BF02584795
  • [Si1] Ja. G. Sinaĭ, Construction of Markov partitionings, Funkcional. Anal. i Priložen. 2 (1968), no. 3, 70-80 (Loose errata) (Russian). MR 0250352 (40 #3591)
  • [Si2] Ja. G. Sinaĭ, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21-64 (Russian). MR 0399421 (53 #3265)
  • [Sm] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 0228014 (37 #3598)
  • [Sp] Michael Spivak, A comprehensive introduction to differential geometry. Vol. I, 2nd ed., Publish or Perish Inc., Wilmington, Del., 1979. MR 532830 (82g:53003a)
  • [Sr] S. M. Srivastava, A course on Borel sets, Graduate Texts in Mathematics, vol. 180, Springer-Verlag, New York, 1998. MR 1619545 (99d:04002)
  • [Ta] Yōichirō Takahashi, Isomorphisms of $ \beta $-automorphisms to Markov automorphisms, Osaka J. Math. 10 (1973), 175-184. MR 0340552 (49 #5304)
  • [Y] Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585-650. MR 1637655 (99h:58140), https://doi.org/10.2307/120960
  • [Z] Roland Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points, Ergodic Theory Dynam. Systems 20 (2000), no. 5, 1519-1549. MR 1786727 (2001h:37014), https://doi.org/10.1017/S0143385700000821

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 37D25, 37D35

Retrieve articles in all journals with MSC (2010): 37D25, 37D35


Additional Information

Omri M. Sarig
Affiliation: Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, 234 Herzl Street, POB 26, Rehovot 76100, Israel
Email: omsarig@gmail.com

DOI: https://doi.org/10.1090/S0894-0347-2012-00758-9
Keywords: Markov partitions, symbolic dynamics, periodic points, Lyapunov exponents
Received by editor(s): January 21, 2011
Received by editor(s) in revised form: September 2, 2012
Published electronically: November 26, 2012
Additional Notes: This work was partially supported by the NSF grant DMS–0400687 and by the ERC award ERC-2009-StG no. 239885
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society