Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Stationary measures and invariant subsets of homogeneous spaces (II)


Authors: Yves Benoist and Jean-François Quint
Journal: J. Amer. Math. Soc. 26 (2013), 659-734
MSC (2010): Primary 22E40, 37C40, 37C85
DOI: https://doi.org/10.1090/S0894-0347-2013-00760-2
Published electronically: January 11, 2013
MathSciNet review: 3037785
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a real Lie group, $ \Lambda $ a lattice of $ G$, $ \mu $ a compactly supported probability measure on $ G$, and $ \Gamma $ the subgroup generated by the support of $ \mu $. We prove that, when the Zariski closure of the adjoint group $ {\rm Ad }(\Gamma )$ is semisimple with no compact factor, every $ \mu $-ergodic $ \mu $-stationary probability measure on $ G/\Lambda $ is homogeneous. We also prove similar results for $ p$-adic Lie groups.


References [Enhancements On Off] (What's this?)

  • [1] R. Aoun, Application des marches aléatoires à l'étude des sous-groupes des groupes linéaires, PhD thesis (2011).
  • [2] Y. Benoist, Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal. 7 (1997), no. 1, 1-47 (French, with English and French summaries). MR 1437472 (98b:22010), https://doi.org/10.1007/PL00001613
  • [3] Y. Benoist, J.-F. Quint, Lattices in $ \mathcal S$-adic Lie groups, preprint (2010).
  • [4] Yves Benoist and Jean-François Quint, Mesures stationnaires et fermés invariants des espaces homogènes II, C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 341-345 (French, with English and French summaries). MR 2783332 (2012b:60017), https://doi.org/10.1016/j.crma.2011.01.015
  • [5] Y. Benoist, J.-F. Quint Mesures stationnaires et fermés invariants des espaces homogènes II, CRAS (2010).
  • [6] Y. Benoist, J.-F. Quint Stationary measures and invariant subsets of homogeneous spaces (III), en preparation.
  • [7] Yves Benoist and Jean-Francois Quint, Random walks on finite volume homogeneous spaces, Invent. Math. 187 (2012), no. 1, 37-59. MR 2874934, https://doi.org/10.1007/s00222-011-0328-5
  • [8] Y. Benoist, J.-F. Quint, Lattices in $ \mathcal S$-adic Lie groups, preprint, 2010.
  • [9] Y. Benoist, J.-F. Quint, Random walks on semisimple groups.
  • [10] Y. Benoist, J.-F. Quint, On $ p$-adic Lie groups.
  • [11] Philippe Bougerol and Jean Lacroix, Products of random matrices with applications to Schrödinger operators, Progress in Probability and Statistics, vol. 8, Birkhäuser Boston Inc., Boston, MA, 1985. MR 886674 (88f:60013)
  • [12] Jean Bourgain, Alex Furman, Elon Lindenstrauss, and Shahar Mozes, Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus, J. Amer. Math. Soc. 24 (2011), no. 1, 231-280. MR 2726604 (2011k:37008), https://doi.org/10.1090/S0894-0347-2010-00674-1
  • [13] C. Chabauty, Limites d'ensembles et théorie des nombres, Bull. Soc. Math. Fr. 78 (1950), 143-151.
  • [14] R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160. MR 0110954 (22 #1822)
  • [15] S. G. Dani and G. A. Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, I. M. Gelfand Seminar, Adv. Soviet Math., vol. 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91-137. MR 1237827 (95b:22024)
  • [16] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$ p$-groups, London Mathematical Society Lecture Note Series, vol. 157, Cambridge University Press, Cambridge, 1991. MR 1152800 (94e:20037)
  • [17] Alex Eskin and Gregory Margulis, Recurrence properties of random walks on finite volume homogeneous manifolds, Random walks and geometry, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 431-444. MR 2087794 (2005m:22025)
  • [18] Yves Guivarc'h and Albert Raugi, Propriétés de contraction d'un semi-groupe de matrices inversibles. Coefficients de Liapunoff d'un produit de matrices aléatoires indépendantes, Israel J. Math. 65 (1989), no. 2, 165-196 (French, with English summary). MR 998669 (91b:22006), https://doi.org/10.1007/BF02764859
  • [19] Jean-Romain Heu, Dynamical properties of groups of automorphisms on Heisenberg nilmanifolds, Geom. Dedicata 145 (2010), 89-101. MR 2600947 (2011d:37043), https://doi.org/10.1007/s10711-009-9407-9
  • [20] Gregory Margulis, Problems and conjectures in rigidity theory, Mathematics: frontiers and perspectives, Amer. Math. Soc., Providence, RI, 2000, pp. 161-174. MR 1754775 (2001d:22008)
  • [21] G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), no. 1-3, 347-392. MR 1253197 (95k:22013), https://doi.org/10.1007/BF01231565
  • [22] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag London Ltd., London, 1993. MR 1287609 (95j:60103)
  • [23] J.-F. Quint, Cônes limites des sous-groupes discrets des groupes réductifs sur un corps local, Transform. Groups 7 (2002), no. 3, 247-266 (French, with English summary). MR 1923973 (2003h:20086), https://doi.org/10.1007/s00031-002-0013-2
  • [24] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, New York, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. MR 0507234 (58 #22394a)
  • [25] Marina Ratner, On Raghunathan's measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545-607. MR 1135878 (93a:22009), https://doi.org/10.2307/2944357
  • [26] Marina Ratner, Raghunathan's conjectures for Cartesian products of real and $ p$-adic Lie groups, Duke Math. J. 77 (1995), no. 2, 275-382. MR 1321062 (96d:22015), https://doi.org/10.1215/S0012-7094-95-07710-2
  • [27] J. Tits, Reductive groups over local fields, Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 29-69. MR 546588 (80h:20064)
  • [28] Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417 (86j:22014)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 22E40, 37C40, 37C85

Retrieve articles in all journals with MSC (2010): 22E40, 37C40, 37C85


Additional Information

Yves Benoist
Affiliation: CNRS, Université Paris-Sud Bat.425, 91405 Orsay, France
Email: yves.benoist@math.u-psud.fr

Jean-François Quint
Affiliation: CNRS – Université Paris-Nord, LAGA, 93430 Villetaneuse, France
Email: quint@math.univ-paris13.fr

DOI: https://doi.org/10.1090/S0894-0347-2013-00760-2
Received by editor(s): July 8, 2011
Received by editor(s) in revised form: October 9, 2012
Published electronically: January 11, 2013
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society