Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Loop groups and twisted $ K$-theory II


Authors: Daniel S. Freed, Michael J. Hopkins and Constantin Teleman
Journal: J. Amer. Math. Soc. 26 (2013), 595-644
MSC (2010): Primary 22E67, 57R56, 19L50
DOI: https://doi.org/10.1090/S0894-0347-2013-00761-4
Published electronically: February 7, 2013
MathSciNet review: 3037783
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is the second in a series of papers investigating the relationship between the twisted equivariant $ K$-theory of a compact Lie group $ G$ and the ``Verlinde ring'' of its loop group. We introduce the Dirac family of Fredholm operators associated to a positive energy representation of a loop group. It determines a map from isomorphism classes of representations to twisted $ K$-theory, which we prove is an isomorphism if $ G$ is connected with a torsion-free fundamental group. We also introduce a Dirac family for finite dimensional representations of compact Lie groups; it is closely related to both the Kirillov correspondence and the equivariant Thom isomorphism. (In Part III of this series we extend the proof of our main theorem to arbitrary compact Lie groups $ G$ and provide supplements in various directions. In Part I we develop twisted equivariant $ K$-theory and carry out some of the computations needed here.)


References [Enhancements On Off] (What's this?)

  • [A] J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560 (40 #5780)
  • [AM] A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000), no. 1, 135-172. MR 1728878 (2001j:17022), https://doi.org/10.1007/s002229900025
  • [AB] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451-491. MR 0232406 (38 #731)
  • [ABS] M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl. 1, 3-38. MR 0167985 (29 #5250)
  • [AS] Michael Atiyah and Graeme Segal, Twisted $ K$-theory, Ukr. Mat. Visn. 1 (2004), no. 3, 287-330; English transl., Ukr. Math. Bull. 1 (2004), no. 3, 291-334. MR 2172633 (2006m:55017)
  • [BW] A. Borel and A. Weil, Representations lineaires et espaces homogenes Kählerians des groupes de Lie compactes, Séminaire Bourbaki, May 1954, Exposé par J.-P. Serre.
  • [B] Raoul Bott, Homogeneous vector bundles, Ann. of Math. (2) 66 (1957), 203-248. MR 0089473 (19,681d)
  • [DK] J. J. Duistermaat and J. A. C. Kolk, Lie groups, Universitext, Springer-Verlag, Berlin, 2000. MR 1738431 (2001j:22008)
  • [F] Daniel S. Freed, The geometry of loop groups, J. Differential Geom. 28 (1988), no. 2, 223-276. MR 961515 (89k:22036)
  • [FHT1] Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman, Loop groups and twisted $ K$-theory I, J. Topol. 4 (2011), no. 4, 737-798. MR 2860342, https://doi.org/10.1112/jtopol/jtr019
  • [FHT2] Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman, Twisted equivariant $ K$-theory with complex coefficients, J. Topol. 1 (2008), no. 1, 16-44. MR 2365650 (2009c:19011), https://doi.org/10.1112/jtopol/jtm001
  • [FHT3] Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman, Loop groups and twisted $ K$-theory III, Ann. of Math. (2) 174 (2011), no. 2, 947-1007. MR 2831111, https://doi.org/10.4007/annals.2011.174.2.5
  • [FHT4] Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman, Consistent orientation of moduli spaces, The many facets of geometry, Oxford Univ. Press, Oxford, 2010, pp. 395-419. MR 2681705 (2011h:57043), https://doi.org/10.1093/acprof:oso/9780199534920.003.0019
  • [G] Sebastian Goette, Equivariant $ \eta $-invariants on homogeneous spaces, Math. Z. 232 (1999), no. 1, 1-42. MR 1714278 (2001d:58022), https://doi.org/10.1007/PL00004757
  • [H1] Nigel Hitchin, Generalized geometry--an introduction, Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys., vol. 16, Eur. Math. Soc., Zürich, 2010, pp. 185-208. MR 2681591 (2011j:53172), https://doi.org/10.4171/079-1/6
  • [H2] Einar Hille, On roots and logarithms of elements of a complex Banach algebra, Math. Ann. 136 (1958), 46-57. MR 0096137 (20 #2632)
  • [K1] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219 (92k:17038)
  • [K2] A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. MR 2069175 (2005c:22001)
  • [K3] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387. MR 0142696 (26 #265)
  • [K4] Bertram Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups, Duke Math. J. 100 (1999), no. 3, 447-501. MR 1719734 (2001k:22032), https://doi.org/10.1215/S0012-7094-99-10016-0
  • [KS] Bertram Kostant and Shlomo Sternberg, Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, Ann. Physics 176 (1987), no. 1, 49-113. MR 893479 (88m:58057), https://doi.org/10.1016/0003-4916(87)90178-3
  • [L] Gregory D. Landweber, Multiplets of representations and Kostant's Dirac operator for equal rank loop groups, Duke Math. J. 110 (2001), no. 1, 121-160. MR 1861090 (2002h:17028), https://doi.org/10.1215/S0012-7094-01-11014-4
  • [M] Jouko Mickelsson, Gerbes, (twisted) $ K$-theory, and the supersymmetric WZW model, Infinite dimensional groups and manifolds, IRMA Lect. Math. Theor. Phys., vol. 5, de Gruyter, Berlin, 2004, pp. 93-107. MR 2104355 (2006c:58037)
  • [PS] Andrew Pressley and Graeme Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1986. Oxford Science Publications. MR 900587 (88i:22049)
  • [RCW] Alvany Rocha-Caridi and Nolan R. Wallach, Projective modules over graded Lie algebras. I, Math. Z. 180 (1982), no. 2, 151-177. MR 661694 (83h:17018), https://doi.org/10.1007/BF01318901
  • [S1] Graeme Segal, Cohomology of topological groups, Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69) Academic Press, London, 1970, pp. 377-387. MR 0280572 (43 #6292)
  • [S2] Stephen Slebarski, Dirac operators on a compact Lie group, Bull. London Math. Soc. 17 (1985), no. 6, 579-583. MR 813743 (87c:58115), https://doi.org/10.1112/blms/17.6.579
  • [T] C. Taubes, Notes on the Dirac operator on loop space unpublished manuscript (1989).

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 22E67, 57R56, 19L50

Retrieve articles in all journals with MSC (2010): 22E67, 57R56, 19L50


Additional Information

Daniel S. Freed
Affiliation: Department of Mathematics, University of Texas, 1 University Station C1200, Austin, Texas 78712-0257
Email: dafr@math.utexas.edu

Michael J. Hopkins
Affiliation: Department of Mathematics, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
Email: mjh@math.harvard.edu

Constantin Teleman
Affiliation: Department of Mathematics, University of California, 970 Evans Hall, Berkeley, California 94720-3840
Email: C.Teleman@dpmms.cam.ac.uk

DOI: https://doi.org/10.1090/S0894-0347-2013-00761-4
Received by editor(s): November 9, 2009
Received by editor(s) in revised form: December 7, 2012
Published electronically: February 7, 2013
Additional Notes: During the course of this work the first author was partially supported by NSF grants DMS-0072675 and DMS-0305505.
During the course of this work the second author was partially suppported by NSF grants DMS-9803428 and DMS-0306519
During the course of this work the third author was partially supported by NSF grant DMS-0072675
The authors also thank the KITP of Santa Barbara (NSF Grant PHY99-07949) and the Aspen Center for Physics for hosting their summer programs, where various sections of this paper were revised and completed.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society