Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Bounds for Rankin-Selberg integrals and quantum unique ergodicity for powerful levels


Authors: Paul D. Nelson, Ameya Pitale and Abhishek Saha
Journal: J. Amer. Math. Soc. 27 (2014), 147-191
MSC (2010): Primary 11F11; Secondary 11F70, 22E50, 58J51
DOI: https://doi.org/10.1090/S0894-0347-2013-00779-1
Published electronically: August 6, 2013
MathSciNet review: 3110797
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f$ be a classical holomorphic newform of level $ q$ and even weight $ k$. We show that the pushforward to the full level modular curve of the mass of $ f$ equidistributes as $ q k \rightarrow \infty $. This generalizes known results in the case that $ q$ is squarefree. We obtain a power savings in the rate of equidistribution as $ q$ becomes sufficiently ``powerful'' (far away from being squarefree) and in particular in the ``depth aspect'' as $ q$ traverses the powers of a fixed prime.

We compare the difficulty of such equidistribution problems to that of corresponding subconvexity problems by deriving explicit extensions of Watson's formula to certain triple product integrals involving forms of nonsquarefree level. By a theorem of Ichino and a lemma of Michel-Venkatesh, this amounts to a detailed study of Rankin-Selberg integrals $ \int \vert f\vert^2 E$ attached to newforms $ f$ of arbitrary level and Eisenstein series $ E$ of full level.

We find that the local factors of such integrals participate in many amusing analogies with global $ L$-functions. For instance, we observe that the mass equidistribution conjecture with a power savings in the depth aspect is equivalent to knowing either a global subconvexity bound or what we call a ``local subconvexity bound''; a consequence of our local calculations is what we call a ``local Lindelöf hypothesis''.


References [Enhancements On Off] (What's this?)

  • [1] A. O. L. Atkin and J. Lehner, Hecke operators on $ \Gamma _{0}(m)$, Math. Ann. 185 (1970), 134-160. MR 0268123 (42 #3022)
  • [2] François Brunault.
    On the ramification of modular parametrizations at the cusps.
    Preprint.
  • [3] Daniel Bump, Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, vol. 55, Cambridge University Press, Cambridge, 1997. MR 1431508 (97k:11080)
  • [4] Colin J. Bushnell, Guy M. Henniart, and Philip C. Kutzko, Local Rankin-Selberg convolutions for $ {\rm GL}_n$: explicit conductor formula, J. Amer. Math. Soc. 11 (1998), no. 3, 703-730. MR 1606410 (99h:22022), https://doi.org/10.1090/S0894-0347-98-00270-7
  • [5] Pierre Deligne.
    Formes modulaires et représentations $ \ell $-adiques.
    Séminaire Bourbaki, Vol. 1968/1969, Exp. 347-363, 179:139-172, 1971.
  • [6] Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307 (French). MR 0340258 (49 #5013)
  • [7] W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), no. 1, 73-90. MR 931205 (89d:11033), https://doi.org/10.1007/BF01393993
  • [8] Manfred Einsiedler, Elon Lindenstrauss, Philippe Michel, and Akshay Venkatesh, Distribution of periodic torus orbits and Duke's theorem for cubic fields, Ann. of Math. (2) 173 (2011), no. 2, 815-885. MR 2776363 (2012h:37006), https://doi.org/10.4007/annals.2011.173.2.5
  • [9] Paul B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), no. 2, 209-235. MR 881269 (88m:11033), https://doi.org/10.2307/1971310
  • [10] Stephen S. Gelbart, Automorphic forms on adèle groups, Princeton University Press, Princeton, N.J., 1975. Annals of Mathematics Studies, No. 83. MR 0379375 (52 #280)
  • [11] Stephen Gelbart and Hervé Jacquet, A relation between automorphic representations of $ {\rm GL}(2)$ and $ {\rm GL}(3)$, Ann. Sci. École Norm. Sup. (4) 11 (1978), no. 4, 471-542. MR 533066 (81e:10025)
  • [12] Stephen Gelbart and Hervé Jacquet, Forms of $ {\rm GL}(2)$ from the analytic point of view, Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 213-251. MR 546600 (81e:10024)
  • [13] Dorian Goldfeld, Joseph Hundley, and Min Lee.
    Fourier expansions of GL(2) newforms at various cusps.
    arXiv e-prints, 2010.
    http://arxiv.org/abs/1009.0028.
  • [14] George Greaves, Sieves in number theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 43, Springer-Verlag, Berlin, 2001. MR 1836967 (2002i:11092)
  • [15] Benedict H. Gross and Stephen S. Kudla, Heights and the central critical values of triple product $ L$-functions, Compositio Math. 81 (1992), no. 2, 143-209. MR 1145805 (93g:11047)
  • [16] Michael Harris and Stephen S. Kudla, The central critical value of a triple product $ L$-function, Ann. of Math. (2) 133 (1991), no. 3, 605-672. MR 1109355 (93a:11043), https://doi.org/10.2307/2944321
  • [17] Roman Holowinsky, Sieving for mass equidistribution, Ann. of Math. (2) 172 (2010), no. 2, 1499-1516. MR 2680498 (2011i:11060)
  • [18] Roman Holowinsky and Kannan Soundararajan, Mass equidistribution for Hecke eigenforms, Ann. of Math. (2) 172 (2010), no. 2, 1517-1528. MR 2680499 (2011i:11061)
  • [19] Atsushi Ichino, Trilinear forms and the central values of triple product $ L$-functions, Duke Math. J. 145 (2008), no. 2, 281-307. MR 2449948 (2009i:11066), https://doi.org/10.1215/00127094-2008-052
  • [20] Atsushi Ichino and Tamutsu Ikeda, On the periods of automorphic forms on special orthogonal groups and the Gross-Prasad conjecture, Geom. Funct. Anal. 19 (2010), no. 5, 1378-1425. MR 2585578 (2011a:11100), https://doi.org/10.1007/s00039-009-0040-4
  • [21] Henryk Iwaniec, Topics in classical automorphic forms, Graduate Studies in Mathematics, vol. 17, American Mathematical Society, Providence, RI, 1997. MR 1474964 (98e:11051)
  • [22] Henryk Iwaniec, Spectral methods of automorphic forms, 2nd ed., Graduate Studies in Mathematics, vol. 53, American Mathematical Society, Providence, RI, 2002. MR 1942691 (2003k:11085)
  • [23] Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214 (2005h:11005)
  • [24] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of $ L$-functions, Geom. Funct. Anal. Special Volume (2000), 705-741. GAFA 2000 (Tel Aviv, 1999). MR 1826269 (2002b:11117), https://doi.org/10.1007/978-3-0346-0425-3_6
  • [25] Hervé Jacquet, Automorphic forms on $ {\rm GL}(2)$. Part II, Lecture Notes in Mathematics, Vol. 278, Springer-Verlag, Berlin, 1972. MR 0562503 (58 #27778)
  • [26] H. Jacquet and R. P. Langlands, Automorphic forms on $ {\rm GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin, 1970. MR 0401654 (53 #5481)
  • [27] Henry H. Kim, Functoriality for the exterior square of $ {\rm GL}_4$ and the symmetric fourth of $ {\rm GL}_2$, J. Amer. Math. Soc. 16 (2003), no. 1, 139-183. With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak. MR 1937203 (2003k:11083), https://doi.org/10.1090/S0894-0347-02-00410-1
  • [28] E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg $ L$-functions in the level aspect, Duke Math. J. 114 (2002), no. 1, 123-191. MR 1915038 (2004c:11070), https://doi.org/10.1215/S0012-7094-02-11416-1
  • [29] Uwe Krause, Abschätzungen für die Funktion $ \Psi _K(x,y)$ in algebraischen Zahlkörpern, Manuscripta Math. 69 (1990), no. 3, 319-331 (German). MR 1078363 (91i:11165), https://doi.org/10.1007/BF02567930
  • [30] Wenzhi Luo and Peter Sarnak, Mass equidistribution for Hecke eigenforms, Dedicated to the memory of Jürgen K. Moser, Comm. Pure Appl. Math. 56 (2003), no. 7, 874-891. MR 1990480 (2004e:11038), https://doi.org/10.1002/cpa.10078
  • [31] Philippe Michel and Akshay Venkatesh, The subconvexity problem for $ {\rm GL}_2$, Publ. Math. Inst. Hautes Études Sci. 111 (2010), 171-271. MR 2653249 (2012c:11111), https://doi.org/10.1007/s10240-010-0025-8
  • [32] Paul Nelson,
    Mass distribution of automorphic forms on quaternion algebras.
    In preparation.
  • [33] Paul D. Nelson, Equidistribution of cusp forms in the level aspect, Duke Math. J. 160 (2011), no. 3, 467-501. MR 2852367, https://doi.org/10.1215/00127094-144287
  • [34] Paul D. Nelson, Mass equidistribution of Hilbert modular eigenforms, Ramanujan J. 27 (2012), no. 2, 235-284. MR 2886501, https://doi.org/10.1007/s11139-011-9319-9
  • [35] I. Piatetski-Shapiro and Stephen Rallis, Rankin triple $ L$ functions, Compositio Math. 64 (1987), no. 1, 31-115. MR 911357 (89k:11037)
  • [36] Dipendra Prasad and Dinakar Ramakrishnan, On the global root numbers of $ {\rm GL}(n)\times {\rm GL}(m)$, Automorphic forms, automorphic representations, and arithmetic (Fort Worth, TX, 1996), Proc. Sympos. Pure Math., vol. 66, Amer. Math. Soc., Providence, RI, 1999, pp. 311-330. MR 1703765 (2000f:11060)
  • [37] Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195-213. MR 1266075 (95m:11052)
  • [38] Peter Sarnak, Arithmetic quantum chaos, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 183-236. MR 1321639 (96d:11059)
  • [39] Peter Sarnak,
    Recent Progress on QUE,
    http://www.math.princeton.edu/sarnak/SarnakQUE.pdf, 2009.
  • [40] Ralf Schmidt, Some remarks on local newforms for $ \rm GL(2)$, J. Ramanujan Math. Soc. 17 (2002), no. 2, 115-147. MR 1913897 (2003g:11056)
  • [41] J.-P. Serre, A course in arithmetic, Springer-Verlag, New York, 1973. Translated from the French; Graduate Texts in Mathematics, No. 7. MR 0344216 (49 #8956)
  • [42] Hideo Shimizu, Some examples of new forms, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977), no. 1, 97-113. MR 0447121 (56 #5436)
  • [43] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971. Kanô Memorial Lectures, No. 1. MR 0314766 (47 #3318)
  • [44] Kannan Soundararajan, Weak subconvexity for central values of $ L$-functions, Ann. of Math. (2) 172 (2010), no. 2, 1469-1498. MR 2680497 (2011i:11077)
  • [45] K. Soundararajan and Matthew P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676 (2013), 105-120. MR 3028757
  • [46] Thomas Crawford Watson, Rankin triple products and quantum chaos, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)-Princeton University. MR 2703041

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11F11, 11F70, 22E50, 58J51

Retrieve articles in all journals with MSC (2010): 11F11, 11F70, 22E50, 58J51


Additional Information

Paul D. Nelson
Affiliation: École Polytechnique Fédérale de Lausanne, Mathgeom-TAN station 8, CH-1015 Lausanne, Switzerland
Email: paul.nelson@epfl.ch, nelson.paul.david@gmail.com

Ameya Pitale
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
Email: apitale@math.ou.edu

Abhishek Saha
Affiliation: Department of Mathematics, University of Bristol, Bristol BS81TW, United Kingdom
Email: abhishek.saha@gmail.com

DOI: https://doi.org/10.1090/S0894-0347-2013-00779-1
Received by editor(s): May 30, 2012
Received by editor(s) in revised form: January 8, 2013, April 4, 2013, and June 9, 2013
Published electronically: August 6, 2013
Additional Notes: The first author was supported by NSF grant OISE-1064866 and partially supported by grant SNF-137488
The second author was supported by NSF grant DMS 1100541
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society