Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

Projectivity and birational geometry of Bridgeland moduli spaces


Authors: Arend Bayer and Emanuele Macrì
Journal: J. Amer. Math. Soc. 27 (2014), 707-752
MSC (2010): Primary 14D20; Secondary 18E30, 14J28, 14E30
DOI: https://doi.org/10.1090/S0894-0347-2014-00790-6
Published electronically: April 3, 2014
MathSciNet review: 3194493
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a family of nef divisor classes on every moduli space of stable complexes in the sense of Bridgeland. This divisor class varies naturally with the Bridgeland stability condition. For a generic stability condition on a K3 surface, we prove that this class is ample, thereby generalizing a result of Minamide, Yanagida, and Yoshioka. Our result also gives a systematic explanation of the relation between wall-crossing for Bridgeland-stability and the minimal model program for the moduli space.

We give three applications of our method for classical moduli spaces of sheaves on a K3 surface.

1. We obtain a region in the ample cone in the moduli space of Gieseker-stable sheaves only depending on the lattice of the K3.

2. We determine the nef cone of the Hilbert scheme of $ n$ points on a K3 surface of Picard rank one when $ n$ is large compared to the genus.

3. We verify the ``Hassett-Tschinkel/Huybrechts/Sawon'' conjecture on the existence of a birational Lagrangian fibration for the Hilbert scheme in a new family of cases.


References [Enhancements On Off] (What's this?)

  • [1] Dan Abramovich and Alexander Polishchuk, Sheaves of $ t$-structures and valuative criteria for stable complexes, J. Reine Angew. Math. 590 (2006), 89-130. MR 2208130 (2007g:14014), https://doi.org/10.1515/CRELLE.2006.005
  • [2] Daniele Arcara and Aaron Bertram, Reider's theorem and Thaddeus pairs revisited, Grassmannians, moduli spaces and vector bundles, Clay Math. Proc., vol. 14, Amer. Math. Soc., Providence, RI, 2011, pp. 51-68. MR 2807848 (2012f:14027)
  • [3] Daniele Arcara and Aaron Bertram, Bridgeland-stable moduli spaces for $ K$-trivial surfaces, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 1, 1-38. With an appendix by Max Lieblich. MR 2998828, https://doi.org/10.4171/JEMS/354
  • [4] Daniele Arcara, Aaron Bertram, Izzet Coskun, and Jack Huizenga, The minimal model program for the Hilbert scheme of points on $ \mathbb{P}^2$ and Bridgeland stability, Adv. Math. 235 (2013), 580-626. MR 3010070, https://doi.org/10.1016/j.aim.2012.11.018
  • [5] Arend Bayer, Polynomial Bridgeland stability conditions and the large volume limit, Geom. Topol. 13 (2009), no. 4, 2389-2425. MR 2515708 (2010h:14026), https://doi.org/10.2140/gt.2009.13.2389
  • [6] Arend Bayer and Emanuele Macrì, The space of stability conditions on the local projective plane, Duke Math. J. 160 (2011), no. 2, 263-322. MR 2852118 (2012k:14019), https://doi.org/10.1215/00127094-1444249
  • [7] Arend Bayer and Emanuele Macrì, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones Lagrangian fibrations, Invent. Math. , posted on (To appear)., https://doi.org/10.1007/s00222-014-0501-8
  • [8] Arend Bayer, Emanuele Macrì, and Yukinobu Toda, Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities, J. Alg. Geom. (2011). MR 3121850
  • [9] Arnaud Beauville, Holomorphic symplectic geometry: a problem list, Complex and differential geometry, Springer Proc. Math., vol. 8, Springer, Heidelberg, 2011, pp. 49-63. MR 2964467, https://doi.org/10.1007/978-3-642-20300-8_2
  • [10] A Bondal and D Orlov, Semiorthogonal decomposition for algebraic varieties (1995).
  • [11] Tom Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. London Math. Soc. 31 (1999), no. 1, 25-34. MR 1651025 (99k:18014), https://doi.org/10.1112/S0024609398004998
  • [12] Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613-632. MR 1893007 (2003h:14027), https://doi.org/10.1007/s002220100185
  • [13] Tom Bridgeland, Stability conditions on triangulated categories, Ann. Math. (2) 166 (2007), no. 2, 317-345. MR 2373143 (2009c:14026), https://doi.org/10.4007/annals.2007.166.317
  • [14] Tom Bridgeland, Stability conditions on $ K3$ surfaces, Duke Math. J. 141 (2008), no. 2, 241-291. MR 2376815 (2009b:14030), https://doi.org/10.1215/S0012-7094-08-14122-5
  • [15] Andrei Horia Caldararu, Derived categories of twisted sheaves on Calabi-Yau manifolds, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)-Cornell University. MR 2700538
  • [16] Andrei Căldăraru, Nonfine moduli spaces of sheaves on $ K3$ surfaces, Int. Math. Res. Not. 20 (2002), 1027-1056. MR 1902629 (2003b:14017), https://doi.org/10.1155/S1073792802109093
  • [17] Alberto Canonaco and Paolo Stellari, Twisted Fourier-Mukai functors, Adv. Math. 212 (2007), no. 2, 484-503. MR 2329310 (2008g:14025), https://doi.org/10.1016/j.aim.2006.10.010
  • [18] Ciro Ciliberto and Andreas Leopold Knutsen, On $ k$-gonal loci in Severi varieties on general $ {K}3$ surfaces and rational curves on hyperkähler manifolds, J. Math. Pure Appl. in press.
  • [19] Alastair Craw and Akira Ishii, Flops of $ G$-Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J. 124 (2004), no. 2, 259-307. MR 2078369 (2005g:14030), https://doi.org/10.1215/S0012-7094-04-12422-4
  • [20] Igor V. Dolgachev and Yi Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5-56. With an appendix by Nicolas Ressayre. MR 1659282 (2000b:14060)
  • [21] S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), no. 3, 257-315. MR 1066174 (92a:57035), https://doi.org/10.1016/0040-9383(90)90001-Z
  • [22] Geir Ellingsrud and Lothar Göttsche, Variation of moduli spaces and Donaldson invariants under change of polarization, J. Reine Angew. Math. 467 (1995), 1-49. MR 1355920 (96h:14009)
  • [23] Gerd Faltings, Stable $ G$-bundles and projective connections, J. Algebraic Geom. 2 (1993), no. 3, 507-568. MR 1211997 (94i:14015)
  • [24] Robert Friedman and Zhenbo Qin, Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces, Commun. Anal. Geom. 3 (1995), no. 1-2, 11-83. MR 1362648 (96m:14048)
  • [25] Lothar Göttsche, Hiraku Nakajima, and Kōta Yoshioka, $ K$-theoretic Donaldson invariants via instanton counting, Pure Appl. Math. Q. 5 (2009), no. 3, Special Issue: In honor of Friedrich Hirzebruch, 1029-1111. MR 2532713 (2010i:14009), https://doi.org/10.4310/PAMQ.2009.v5.n3.a5
  • [26] M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau manifolds and related geometries, Universitext, Springer-Verlag, Berlin, 2003. Lectures from the Summer School held in Nordfjordeid, June 2001. MR 1963559 (2004c:14075)
  • [27] B. Hassett and Y. Tschinkel, Rational curves on holomorphic symplectic fourfolds, Geom. Funct. Anal. 11 (2001), no. 6, 1201-1228. MR 1878319 (2002m:14033), https://doi.org/10.1007/s00039-001-8229-1
  • [28] Brendan Hassett and Yuri Tschinkel, Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal. 19 (2009), no. 4, 1065-1080. MR 2570315 (2011c:14119), https://doi.org/10.1007/s00039-009-0022-6
  • [29] Brendan Hassett and Yuri Tschinkel, Intersection numbers of extremal rays on holomorphic symplectic varieties, Asian J. Math. 14 (2010), no. 3, 303-322. MR 2755719 (2012b:14026), https://doi.org/10.4310/AJM.2010.v14.n3.a2
  • [30] Daniel Huybrechts, Compact hyper-Kähler manifolds: basic results, Invent. Math. 135 (1999), no. 1, 63-113. MR 1664696 (2000a:32039), https://doi.org/10.1007/s002220050280
  • [31] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2010. MR 2665168 (2011e:14017)
  • [32] Daniel Huybrechts, Emanuele Macrì, and Paolo Stellari, Stability conditions for generic $ K3$ categories, Compos. Math. 144 (2008), no. 1, 134-162. MR 2388559 (2009a:14050), https://doi.org/10.1112/S0010437X07003065
  • [33] Daniel Huybrechts and Paolo Stellari, Equivalences of twisted $ K3$ surfaces, Math. Ann. 332 (2005), no. 4, 901-936. MR 2179782 (2007b:14083), https://doi.org/10.1007/s00208-005-0662-2
  • [34] Michi-aki Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ. 42 (2002), no. 2, 317-329. MR 1966840 (2004e:14022)
  • [35] Michi-aki Inaba, Smoothness of the moduli space of complexes of coherent sheaves on an abelian or a projective $ K3$ surface, Adv. Math. 227 (2011), no. 4, 1399-1412. MR 2799799 (2012d:14024), https://doi.org/10.1016/j.aim.2011.03.001
  • [36] D. Kaledin, M. Lehn, and Ch. Sorger, Singular symplectic moduli spaces, Invent. Math. 164 (2006), no. 3, 591-614. MR 2221132 (2007e:14015), https://doi.org/10.1007/s00222-005-0484-6
  • [37] Kotaro Kawatani, Stability of Gieseker stable sheaves on $ {K}3$ surfaces in the sense of Bridgeland and some applications (2011).
  • [38] Masanori Kimura and Kōta Yoshioka, Birational maps of moduli spaces of vector bundles on $ K3$ surfaces, Tokyo J. Math. 34 (2011), no. 2, 473-491. MR 2918917, https://doi.org/10.3836/tjm/1327931397
  • [39] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530. MR 1315461 (96a:16009)., https://doi.org/10.1093/qmath/45.4.515
  • [40] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)
  • [41] Maxim Kontsevich and Yan Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations (2008).
  • [42] A. G. Kuznetsov, Hyperplane sections and derived categories, Izv. Ross. Akad. Nauk Ser. Mat. 70 (2006), no. 3, 23-128 (Russian, with Russian summary); English transl., Izv. Math. 70 (2006), no. 3, 447-547. MR 2238172 (2007c:14014), https://doi.org/10.1070/IM2006v070n03ABEH002318
  • [43] Robert Lazarsfeld, Brill-Noether-Petri without degenerations, J. Diff. Geom. 23 (1986), no. 3, 299-307. MR 852158 (88b:14019)
  • [44] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471 (2005k:14001a)
  • [45] J. Le Potier, Fibré déterminant et courbes de saut sur les surfaces algébriques, Complex projective geometry (Trieste, 1989/Bergen, 1989) London Math. Soc. Lecture Note Ser., vol. 179, Cambridge University Press, Cambridge, 1992, pp. 213-240 (French). MR 1201385 (94e:14058), https://doi.org/10.1017/CBO9780511662652.016
  • [46] Joseph Le Potier, Dualité étrange, sur les surfaces (2005).
  • [47] Jun Li, Algebraic geometric interpretation of Donaldson's polynomial invariants, J. Diff. Geom. 37 (1993), no. 2, 417-466. MR 1205451 (93m:14007)
  • [48] Jun Li, Picard groups of the moduli spaces of vector bundles over algebraic surfaces, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 129-146. MR 1397985 (97e:14019)
  • [49] Max Lieblich, Moduli of complexes on a proper morphism, J. Algebr. Geom. 15 (2006), no. 1, 175-206. MR 2177199 (2006f:14009), https://doi.org/10.1090/S1056-3911-05-00418-2
  • [50] Max Lieblich, Moduli of twisted sheaves, Duke Math. J. 138 (2007), no. 1, 23-118. MR 2309155 (2008d:14018), https://doi.org/10.1215/S0012-7094-07-13812-2
  • [51] Lo Jason, On some moduli of complexes on $ {K}3$ surfaces (2012).
  • [52] Lo Jason and Qin Zhenbo, Mini-walls for Bridgeland stability conditions on the derived category of sheaves over surfaces (2011).
  • [53] Antony Maciocia, Computing the walls associated to Bridgeland stability conditions on projective surfaces, 2012, To appear in Asian J. Math.
  • [54] Antony Maciocia and Ciaran Meachan, Rank 1 Bridgeland stable moduli spaces on a principally polarized abelian surface, Int. Math. Res. Not. IMRN 9 (2013), 2054-2077. MR 3053413
  • [55] Alina Marian and Dragos Oprea, Generic strange duality for $ {K}3$ surfaces, Duke (2010). With an appendix by Kōta Yoshioka. MR 3079253
  • [56] Eyal Markman, On the monodromy of moduli spaces of sheaves on $ {K}3$ surfaces II (2003).
  • [57] Eyal Markman, On the monodromy of moduli spaces of sheaves on $ K3$ surfaces, J. Algebraic Geom. 17 (2008), no. 1, 29-99. MR 2357680 (2008j:14023), https://doi.org/10.1090/S1056-3911-07-00457-2
  • [58] Eyal Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, Vol. 8, Springer, Heidelberg, 2011. Complex and differential geometry, Springer Proc. Math.,. MR 2964480
  • [59] Eyal Markman, Private communication (2012).
  • [60] Dimitri Markushevich, Rational Lagrangian fibrations on punctual Hilbert schemes of $ K3$ surfaces, Manuscripta Math. 120 (2006), no. 2, 131-150. MR 2234244 (2007b:14024), https://doi.org/10.1007/s00229-006-0631-4
  • [61] Kenji Matsuki and Richard Wentworth, Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface, Int. J. Math. 8 (1997), no. 1, 97-148. MR 1433203 (97m:14010), https://doi.org/10.1142/S0129167X97000068
  • [62] Daisuke Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology 38 (1999), no. 1, 79-83. MR 1644091 (99f:14054), https://doi.org/10.1016/S0040-9383(98)00003-2
  • [63] Daisuke Matsushita, On fibre space structures of a projective irreducible symplectic manifold, Topology 38 (1999), no. 1, 79-83. MR 1644091 (99f:14054), https://doi.org/10.1016/S0040-9383(98)00003-2
  • [64] Meachan Ciaran, Moduli of Bridgeland-stable objects (2012). Ph.D. Thesis, University of Edinburgh.
  • [65] Hiroki Minamide, Shintarou Yanagida, and Kōta Yoshioka, Fourier-mukai transforms and the wall-crossing behavior for Bridgeland's stability conditions (2011).
  • [66] Hiroki Minamide, Shintarou Yanagida, and Kōta Yoshioka, Some moduli spaces of Bridgeland's stability conditions (2011).
  • [67] S. Mukai, On the moduli space of bundles on $ K3$ surfaces. I, Vector bundles on algebraic varieties (Bombay, 1984) Tata Inst. Fund. Res. Stud. Math., vol. 11, Tata Inst. Fund. Res., Bombay, 1987, pp. 341-413. MR 893604 (88i:14036)
  • [68] Kieran G. O'Grady, Moduli of vector-bundles on surfaces, Algebraic geometry--Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 101-126. MR 1492520 (99h:14009)
  • [69] Kieran G. O'Grady, Desingularized moduli spaces of sheaves on a $ K3$, J. Reine Angew. Math. 512 (1999), 49-117. MR 1703077 (2000f:14066), https://doi.org/10.1515/crll.1999.056
  • [70] D. O. Orlov, Equivalences of derived categories and $ K3$ surfaces, J. Math. Sci. (New York) 84 (1997), no. 5, 1361-1381. Algebraic Geometry, 7. MR 1465519 (99a:14054), https://doi.org/10.1007/BF02399195
  • [71] Arvid Perego and Antonio Rapagnetta, Factoriality properties of moduli spaces of sheaves on abelian and $ {K}3$ surfaces (2011).
  • [72] A. Polishchuk, Constant families of $ t$-structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007), no. 1, 109-134, 167 (English, with English and Russian summaries). MR 2324559 (2008e:14020)
  • [73] Justin Sawon, Abelian fibred holomorphic symplectic manifolds, Turkish J. Math. 27 (2003), no. 1, 197-230. MR 1975339 (2004g:32021)
  • [74] Justin Sawon, Lagrangian fibrations on Hilbert schemes of points on $ K3$ surfaces, J. Alg. Geom. 16 (2007), no. 3, 477-497. MR 2306277 (2008d:14008), https://doi.org/10.1090/S1056-3911-06-00453-X
  • [75] Paul Seidel and Richard Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), no. 1, 37-108. MR 1831820 (2002e:14030), https://doi.org/10.1215/S0012-7094-01-10812-0
  • [76] Michael Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3, 691-723. MR 1333296 (96m:14017), https://doi.org/10.1090/S0894-0347-96-00204-4
  • [77] Yukinobu Toda, Moduli stacks and invariants of semistable objects on $ K3$ surfaces, Adv. Math. 217 (2008), no. 6, 2736-2781. MR 2397465 (2009a:14017), https://doi.org/10.1016/j.aim.2007.11.010
  • [78] Yukinobu Toda, Limit stable objects on Calabi-Yau 3-folds, Duke Math. J. 149 (2009), no. 1, 157-208. MR 2541209 (2011b:14043), https://doi.org/10.1215/00127094-2009-038
  • [79] Yukinobu Toda, Introduction and open problems of Donaldson-Thomas theory (2011). To appear in Proceedings of the Conference ``Derived Categories'', Tokyo.
  • [80] Misha Verbitsky, HyperKähler SYZ conjecture and semipositive line bundles, Geom. Funct. Anal. 19 (2010), no. 5, 1481-1493. MR 2585581 (2011b:32039), https://doi.org/10.1007/s00039-009-0037-z
  • [81] Shintarou Yanagida and Kōta Yoshioka, Bridgeland's stabilities on abelian surfaces, Math. Z. (2012). MR 3150219
  • [82] Kōta Yoshioka, Brill-Noether problem for sheaves on $ K3$ surfaces, Proceedings of the Workshop ``Algebraic Geometry and Integrable Systems related to String Theory'' (Kyoto, 2000) 1232 (2001), 109-124. MR 1905887
  • [83] Kōta Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann. 321 (2001), no. 4, 817-884. MR 1872531 (2002k:14020), https://doi.org/10.1007/s002080100255
  • [84] Kōta Yoshioka, Moduli spaces of twisted sheaves on a projective variety, Moduli spaces and arithmetic geometry, Adv. Stud. Pure Math., vol. 45, Math. Soc. Japan, Tokyo, 2006, pp. 1-30. MR 2306170 (2008f:14024)
  • [85] Kōta Yoshioka, Stability and the Fourier-Mukai transform. II, Compos. Math. 145 (2009), no. 1, 112-142. MR 2480497 (2010d:14022), https://doi.org/10.1112/S0010437X08003758

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14D20, 18E30, 14J28, 14E30

Retrieve articles in all journals with MSC (2010): 14D20, 18E30, 14J28, 14E30


Additional Information

Arend Bayer
Affiliation: Department of Mathematics, University of Connecticut U-3009, 196 Auditorium Road, Storrs, Connecticut 06269-3009
Address at time of publication: School of Mathematics, The University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road, Edinburgh, Scotland EH9 3JZ, United Kingdom
Email: arend.bayer@ed.ac.uk

Emanuele Macrì
Affiliation: Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, Ohio 43210-1174
Email: macri.6@math.osu.edu

DOI: https://doi.org/10.1090/S0894-0347-2014-00790-6
Keywords: Bridgeland stability conditions, derived category, moduli spaces of complexes, Mumford-Thaddeus principle
Received by editor(s): March 23, 2012
Received by editor(s) in revised form: April 8, 2013, and July 12, 2013
Published electronically: April 3, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society