Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Coxeter orbits and Brauer trees III


Authors: Olivier Dudas and Raphaël Rouquier
Journal: J. Amer. Math. Soc. 27 (2014), 1117-1145
MSC (2010): Primary 20C33; Secondary 18E30, 20C20
DOI: https://doi.org/10.1090/S0894-0347-2014-00791-8
Published electronically: March 25, 2014
MathSciNet review: 3230819
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article is the final one of a series of articles on certain blocks of modular representations of finite groups of Lie type and the associated geometry. We prove the conjecture of Broué on derived equivalences induced by the complex of cohomology of Deligne-Lusztig varieties in the case of Coxeter elements. We also prove a conjecture of Hiß, Lübeck, and Malle on the Brauer trees of the corresponding blocks. As a consequence, we determine the Brauer tree (in particular, the decomposition matrix) of the principal $ \ell $-block of $ E_7(q)$ when $ \ell \mid \Phi _{18}(q)$ and $ E_8(q)$ when $ \ell \mid \Phi _{18}(q)$ or $ \ell \mid \Phi _{30}(q)$.


References [Enhancements On Off] (What's this?)

  • [1] Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209-234. MR 1214458 (94f:18008)
  • [2] Cédric Bonnafé, Quasi-isolated elements in reductive groups, Commun. Algebra 33 (2005), no. 7, 2315-2337. MR 2153225 (2006c:20094), https://doi.org/10.1081/AGB-200063602
  • [3] Cédric Bonnafé and Raphaël Rouquier, Catégories dérivées et variétés de Deligne-Lusztig, Publ. Math. Inst. Hautes Études Sci. 97 (2003), 1-59 (French). MR 2010739 (2004i:20079), https://doi.org/10.1007/s10240-003-0013-3
  • [4] Michel Broué, Isométries de caractères et équivalences de Morita ou dérivées, Inst. Hautes Études Sci. Publ. Math. 71 (1990), 45-63 (French). MR 1079643 (91i:20007)
  • [5] Michel Broué and Gunter Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119-189 (German). Représentations unipotentes génériques et blocs des groupes réductifs finis. MR 1235834 (94m:20095)
  • [6] Michel Broué, Gunter Malle, and Raphaël Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127-190. MR 1637497 (99m:20088)
  • [7] Michel Broué and Jean Michel, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 73-139 (French). MR 1429870 (98h:20077)
  • [8] Michel Broué and Jean Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math. 395 (1989), 56-67 (French). MR 983059 (90b:20037), https://doi.org/10.1515/crll.1989.395.56
  • [9] Marc Cabanes and Michel Enguehard, Local methods for blocks of reductive groups over a finite field, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 141-163. MR 1429871 (97m:20060)
  • [10] Marc Cabanes and Michel Enguehard, Representation theory of finite reductive groups, New Mathematical Monographs, vol. 1, Cambridge University Press, Cambridge, 2004. MR 2057756 (2005g:20067)
  • [11] D. Craven, On the cohomology of Deligne-Lusztig varieties, 2011. arXiv:1107.1871v1, Preprint.
  • [12] D. Craven, Perverse equivalences and Broué's conjecture II: the cyclic case, 2012. in preparation.
  • [13] D. Craven, O. Dudas, and R. Rouquier, Brauer trees of unipotent blocks of $ E_7(q)$ and $ E_8(q)$, 2013. in preparation.
  • [14] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. Math. (2) 103 (1976), no. 1, 103-161. MR 0393266 (52 #14076)
  • [15] D. I. Deriziotis, The centralizers of semisimple elements of the Chevalley groups $ E_{7}$ and $ E_{8}$, Tokyo J. Math. 6 (1983), no. 1, 191-216. MR 707848 (85g:20060), https://doi.org/10.3836/tjm/1270214335
  • [16] D. I. Deriziotis and Martin W. Liebeck, Centralizers of semisimple elements in finite twisted groups of Lie type, J. London Math. Soc. (2) 31 (1985), no. 1, 48-54. MR 810561 (87e:20087), https://doi.org/10.1112/jlms/s2-31.1.48
  • [17] François Digne and Jean Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR 1118841 (92g:20063)
  • [18] François Digne and Jean Michel, Parabolic Deligne-Lusztig varieties, arxiv:1110.4863 (2011). reprint.
  • [19] Olivier Dudas, Coxeter orbits and Brauer trees, Adv. Math. 229 (2012), no. 6, 3398-3435. MR 2900443, https://doi.org/10.1016/j.aim.2012.02.011
  • [20] Olivier Dudas, Coxeter Orbits and Brauer trees II, Int. Math. Res. Not. , posted on (2013)., https://doi.org/10.1093/imrn/rnt070
  • [21] Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam, 1982. MR 661045 (83g:20001)
  • [22] Peter Fleischmann and Ingo Janiszczak, The semisimple conjugacy classes of finite groups of Lie type $ E_6$ and $ E_7$, Commun. Algeb. 21 (1993), no. 1, 93-161. MR 1194553 (93k:20029), https://doi.org/10.1080/00927879208824553
  • [23] Paul Fong and Bhama Srinivasan, Brauer trees in classical groups, J. Algeb. 131 (1990), no. 1, 179-225. MR 1055005 (91i:20008), https://doi.org/10.1016/0021-8693(90)90172-K
  • [24] Meinolf Geck, Brauer trees of Hecke algebras, Commun. Algeb. 20 (1992), no. 10, 2937-2973. MR 1179271 (94a:20019), https://doi.org/10.1080/00927879208824499
  • [25] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592 (95m:20014)
  • [26] J. A. Green, Walking around the Brauer Tree, J. Austral. Math. Soc. 17 (1974), 197-213. Collection of articles dedicated to the memory of Hanna Neumann, VI. MR 0349830 (50 #2323)
  • [27] F. Grunewald, A. Jaikin-Zapirain, and P. A. Zalesskii, Cohomological goodness and the profinite completion of Bianchi groups, Duke Math. J. 144 (2008), no. 1, 53-72. MR 2429321 (2009e:20063), https://doi.org/10.1215/00127094-2008-031
  • [28] Gerhard Hiss, The Brauer trees of the Ree groups, Commun. Algeb. 19 (1991), no. 3, 871-888. MR 1102991 (92h:20019), https://doi.org/10.1080/00927879108824175
  • [29] Gerhard Hiss and Frank Lübeck, The Brauer trees of the exceptional Chevalley groups of types $ F_4$ and $ ^2\!E_6$, Arch. Math. (Basel) 70 (1998), no. 1, 16-21. MR 1487449 (98k:20017), https://doi.org/10.1007/s000130050159
  • [30] Gerhard Hiss, Frank Lübeck, and Gunter Malle, The Brauer trees of the exceptional Chevalley groups of type $ E_6$, Manuscripta Math. 87 (1995), no. 1, 131-144. MR 1329444 (96c:20027), https://doi.org/10.1007/BF02570465
  • [31] Bernhard Keller, On the construction of triangle equivalences, Derived equivalences for group rings, Lecture Notes in Math., vol. 1685, Springer, Berlin, 1998, pp. 155-176. MR 1649844, https://doi.org/10.1007/BFb0096374
  • [32] Bernhard Keller, Invariance and localization for cyclic homology of DG algebras, J. Pure Appl. Algebra 123 (1998), no. 1-3, 223-273. MR 1492902 (99c:16009), https://doi.org/10.1016/S0022-4049(96)00085-0
  • [33] Bernhard Keller and Dieter Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 6, 225-228 (French, with English summary). MR 907948 (88m:18014)
  • [34] G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976/77), no. 2, 101-159. MR 0453885 (56 #12138)
  • [35] I. Marin, Galois actions on complex braid groups, Galois-Teichmüller theory and Arithmetic Geometry, Math. Soc. of Japan (2012).
  • [36] Tokushi Nakamura, A note on the $ K(\pi ,\,1)$ property of the orbit space of the unitary reflection group $ G(m,\,l,\,n)$, Sci. Papers College Arts Sci. Univ. Tokyo 33 (1983), no. 1, 1-6. MR 714667 (85e:32015)
  • [37] Jeremy Rickard, Derived categories and stable equivalence, J. Pure Appl. Algeb. 61 (1989), no. 3, 303-317. MR 1027750 (91a:16004), https://doi.org/10.1016/0022-4049(89)90081-9
  • [38] Jeremy Rickard, Finite group actions and étale cohomology, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 81-94 (1995). MR 1320604 (96b:14018)
  • [39] Raphaël Rouquier, Complexes de chaînes étales et courbes de Deligne-Lusztig, J. Algeb. 257 (2002), no. 2, 482-508 (French, with English summary). MR 1947973 (2004b:20024), https://doi.org/10.1016/S0021-8693(02)00530-6
  • [40] Raphaël Rouquier, Derived equivalences and finite dimensional algebras, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 191-221. MR 2275594 (2007m:20015)
  • [41] Jean-Pierre Serre, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author. MR 1867431 (2002i:12004)
  • [42] Josephine Shamash, Brauer trees for blocks of cyclic defect in the groups $ G_2(q)$ for primes dividing $ q^2\pm q+1$, J. Algebra 123 (1989), no. 2, 378-396. MR 1000493 (90m:20016), https://doi.org/10.1016/0021-8693(89)90052-5
  • [43] T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159-198. MR 0354894 (50 #7371)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 20C33, 18E30, 20C20

Retrieve articles in all journals with MSC (2010): 20C33, 18E30, 20C20


Additional Information

Olivier Dudas
Affiliation: Université Denis Diderot – Paris 7, UFR de Mathématiques, Institut de Mathématiques de Jussieu, Case 7012, 75205 Paris Cedex 13, France
Email: dudas@math.jussieu.fr

Raphaël Rouquier
Affiliation: Department of Mathematics, UCLA, Box 951555, Los Angeles, California 90095-1555
Email: rouquier@math.ucla.edu

DOI: https://doi.org/10.1090/S0894-0347-2014-00791-8
Keywords: Finite reductive groups, Brauer trees, Deligne-Lusztig varieties, Derived categories, Brou\'e's conjecture
Received by editor(s): October 16, 2012
Received by editor(s) in revised form: August 16, 2013
Published electronically: March 25, 2014
Additional Notes: The first author was supported by the EPSRC, Project No EP/H026568/1 and by Magdalen College, Oxford.
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society