Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

Parity sheaves


Authors: Daniel Juteau, Carl Mautner and Geordie Williamson
Journal: J. Amer. Math. Soc. 27 (2014), 1169-1212
MSC (2010): Primary 55N33, 20C20
DOI: https://doi.org/10.1090/S0894-0347-2014-00804-3
Published electronically: May 21, 2014
MathSciNet review: 3230821
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a stratified variety $ X$ with strata satisfying a cohomological parity-vanishing condition, we define and show the uniqueness of ``parity sheaves,'' which are objects in the constructible derived category of sheaves with coefficients in an arbitrary field or complete discrete valuation ring. This construction depends on the choice of a parity function on the strata.

If $ X$ admits a resolution also satisfying a parity condition, then the direct image of the constant sheaf decomposes as a direct sum of parity sheaves, and the multiplicities of the indecomposable summands are encoded in certain refined intersection forms appearing in the work of de Cataldo and Migliorini. We give a criterion for the Decomposition Theorem to hold in the semi-small case.

Our framework applies to many stratified varieties arising in representation theory such as generalised flag varieties, toric varieties, and nilpotent cones. Moreover, parity sheaves often correspond to interesting objects in representation theory. For example, on flag varieties we recover in a unified way several well-known complexes of sheaves. For one choice of parity function we obtain the indecomposable tilting perverse sheaves. For another, when using coefficients of characteristic zero, we recover the intersection cohomology sheaves and in arbitrary characteristic the special sheaves of Soergel, which are used by Fiebig in his proof of Lusztig's conjecture.


References [Enhancements On Off] (What's this?)

  • [AM12] Pramod N. Achar, Perverse coherent sheaves on the nilpotent cone in good characteristic, Recent developments in Lie algebras, groups and representation theory, Proc. Sympos. Pure Math., vol. 86, Amer. Math. Soc., Providence, RI, 2012, pp. 1-23. MR 2976995, https://doi.org/10.1090/pspum/086/1409
  • [BBD82] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171 (French). MR 751966 (86g:32015)
  • [BBFK99] Gottfried Barthel, Jean-Paul Brasselet, Karl-Heinz Fieseler, and Ludger Kaup, Equivariant intersection cohomology of toric varieties, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 45-68. MR 1718136 (2001i:14030), https://doi.org/10.1090/conm/241/03627
  • [BBM04] A. Beilinson, R. Bezrukavnikov, and I. Mirković, Tilting exercises, Mosc. Math. J. 4 (2004), no. 3, 547-557, 782 (English, with English and Russian summaries). MR 2119139 (2006a:14022)
  • [BJ01] Michel Brion and Roy Joshua, Vanishing of odd-dimensional intersection cohomology. II, Math. Ann. 321 (2001), no. 2, 399-437. MR 1866494 (2003i:14022), https://doi.org/10.1007/s002080100235
  • [BL94a] Arnaud Beauville and Yves Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994), no. 2, 385-419. MR 1289330 (95k:14011)
  • [BL94b] Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527 (95k:55012)
  • [BM83] Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23-74. MR 737927 (85j:14087)
  • [BM01] Tom Braden and Robert MacPherson, From moment graphs to intersection cohomology, Math. Ann. 321 (2001), no. 3, 533-551. MR 1871967 (2003g:14030), https://doi.org/10.1007/s002080100232
  • [BO11] Jonathan Brundan and Victor Ostrik, Cohomology of Spaltenstein varieties, Transform. Groups 16 (2011), no. 3, 619-648. MR 2827037, https://doi.org/10.1007/s00031-011-9149-2
  • [Bor61] Armand Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J. (2) 13 (1961), 216-240 (French). MR 0147579 (26 #5094)
  • [Bri] Geometry of toric varieties, Séminaires et Congrès [Seminars and Congresses], vol. 6, Société Mathématique de France, Paris, 2002. Lectures from the Summer School held in Grenoble, June 19-July 7, 2000; Edited by Laurent Bonavero and Michel Brion. MR 2072676 (2005a:14001)
  • [BZ03] Jean-Luc Brylinski and Bin Zhang, Equivariant Todd classes for toric varieties (2003), available at arXiv/0311318.
  • [Car85] Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307 (87d:20060)
  • [CG97] Neil Chriss and Victor Ginzburg, Representation theory and complex geometry, Birkhäuser Boston Inc., Boston, MA, 1997. MR 1433132 (98i:22021)
  • [CLS11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322 (2012g:14094)
  • [CM93] David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060 (94j:17001)
  • [CPS93] Edward Cline, Brian Parshall, and Leonard Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2) 45 (1993), no. 4, 511-534. MR 1245719 (94k:20079), https://doi.org/10.2748/tmj/1178225846
  • [Dan78] V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85-134, 247 (Russian). MR 495499 (80g:14001)
  • [DCLP88] C. De Concini, G. Lusztig, and C. Procesi, Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc. 1 (1988), no. 1, 15-34. MR 924700 (89f:14052), https://doi.org/10.2307/1990965
  • [dCM02] Mark Andrea A. de Cataldo and Luca Migliorini, The hard Lefschetz theorem and the topology of semismall maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 5, 759-772 (English, with English and French summaries). MR 1951443 (2003m:32026), https://doi.org/10.1016/S0012-9593(02)01108-4
  • [dCM05] Mark Andrea A. de Cataldo and Luca Migliorini, The Hodge theory of algebraic maps, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 5, 693-750 (English, with English and French summaries). MR 2195257 (2007a:14016), https://doi.org/10.1016/j.ansens.2005.07.001
  • [Dem73] Michel Demazure, Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301 (French). MR 0342522 (49 #7268)
  • [Fei82] Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam, 1982. MR 661045 (83g:20001)
  • [Fre13] Lucas Fresse, Upper triangular parts of conjugacy classes of nilpotent matrices with finite number of $ B$-orbits, J. Math. Soc. Japan 65 (2013), no. 3, 967-992. MR 3084986
  • [Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037 (94g:14028)
  • [FW] Peter Fiebig and Geordie Williamson, Parity sheaves, moment graphs and the $ p$-smooth locus of Schubert varieties, available at arXiv:1008.0719. To appear in Ann. Inst. Fourier.
  • [GKM98] Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25-83. MR 1489894 (99c:55009), https://doi.org/10.1007/s002220050197
  • [GL05] S. Gaussent and P. Littelmann, LS galleries, the path model, and MV cycles, Duke Math. J. 127 (2005), no. 1, 35-88. MR 2126496 (2006c:20092), https://doi.org/10.1215/S0012-7094-04-12712-5
  • [GM88] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724 (90d:57039)
  • [Gro99] Ian Grojnowski, Affine $ \mathfrak{sl}_p$ controls the representation theory of the symmetric groups and related Hecke algebras (1999), available at arXiv:math/9907129.
  • [Her13] Sebastian Herpel, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3753-3774. MR 3042602, https://doi.org/10.1090/S0002-9947-2012-05745-X
  • [JMW] Carl Mautner Daniel Juteau and Geordie Williamson, Parity sheaves and tilting modules. In preparation.
  • [Jut08a] Daniel Juteau, Cohomology of the minimal nilpotent orbit, Transform. Groups 13 (2008), no. 2, 355-387. MR 2426135 (2009g:14058), https://doi.org/10.1007/s00031-008-9009-x
  • [Jut08b] Daniel Juteau, Modular representations of reductive groups and geometry of affine Grassmannians (2008), available at arXiv:0804.2041.
  • [Jut09] Daniel Juteau, Decomposition numbers for perverse sheaves, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 3, 1177-1229 (English, with English and French summaries). MR 2543666 (2011a:14028)
  • [Kac85] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math. 80 (1985), no. 1, 69-79. MR 784529 (86m:57041), https://doi.org/10.1007/BF01388548
  • [KL80] David Kazhdan and George Lusztig, Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 185-203. MR 573434 (84g:14054)
  • [KS94] Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006 (92a:58132)
  • [Kum02] Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002. MR 1923198 (2003k:22022)
  • [LC07] Jue Le and Xiao-Wu Chen, Karoubianness of a triangulated category, J. Algebra 310 (2007), no. 1, 452-457. MR 2307804 (2007k:18016), https://doi.org/10.1016/j.jalgebra.2006.11.027
  • [Lus86] George Lusztig, Character sheaves. IV, Adv. in Math. 59 (1986), no. 1, 1-63. MR 825086 (87m:20118b), https://doi.org/10.1016/0001-8708(86)90036-8
  • [Mak13] Ruslan Maksimau, Canonical basis, KLR-algebras and parity sheaves (2013), available at arXiv:1301.6261.
  • [MV07] I. Mirković and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95-143. MR 2342692 (2008m:22027), https://doi.org/10.4007/annals.2007.166.95
  • [Nad05] David Nadler, Perverse sheaves on real loop Grassmannians, Invent. Math. 159 (2005), no. 1, 1-73. MR 2142332 (2006c:14021), https://doi.org/10.1007/s00222-004-0382-3
  • [Pan91] D. I. Panyushev, Rationality of singularities and the Gorenstein property of nilpotent orbits, Funktsional. Anal. i Prilozhen. 25 (1991), no. 3, 76-78 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 3, 225-226 (1992). MR 1139878 (92i:14047), https://doi.org/10.1007/BF01085494
  • [Ric67] R. W. Richardson Jr., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math. (2) 86 (1967), 1-15. MR 0217079 (36 #173)
  • [Rin92] Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208 (1991), no. 2, 209-223. MR 1128706 (93c:16010), https://doi.org/10.1007/BF02571521
  • [RS65] M. Rothenberg and N. E. Steenrod, The cohomology of classifying spaces of $ H$-spaces, Bull. Amer. Math. Soc. 71 (1965), 872-875. MR 0208596 (34 #8405)
  • [RSW] Simon Riche, Wolfgang Soergel, and Geordie Williamson, Modular Koszul duality, available at arXiv:1209.3760. To appear in Compos. Math.
  • [Ser67] Jean-Pierre Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1967 (French). MR 0232867 (38 #1190)
  • [Soe00] Wolfgang Soergel, On the relation between intersection cohomology and representation theory in positive characteristic, J. Pure Appl. Algebra 152 (2000), no. 1-3, 311-335. Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998). MR 1784005 (2001k:20098), https://doi.org/10.1016/S0022-4049(99)00138-3
  • [Soe01] Wolfgang Soergel, Langlands' philosophy and Koszul duality, Algebra--representation theory (Constanta, 2000), vol. 28, Kluwer Acad. Publ., Dordrecht, 2001. MR1858045 (2002j:22019)
  • [Som06] Eric N. Sommers, Equivalence classes of ideals in the nilradical of a Borel subalgebra, Nagoya Math. J. 183 (2006), 161-185. MR 2253889 (2007h:17010)
  • [Spr82] T. A. Springer, Quelques applications de la cohomologie d'intersection, Bourbaki Seminar, Vol. 1981/1982, Astérisque, vol. 92, Soc. Math. France, Paris, 1982, pp. 249-273 (French). MR 689533 (85i:32016b)
  • [Ste75] Robert Steinberg, Torsion in reductive groups, Advances in Math. 15 (1975), 63-92. MR 0354892 (50 #7369)
  • [VW] Kari Vilonen and Geordie Williamson, Characteristic cycles and decomposition numbers, available at arXiv:1208.1198. To appear in Math. Res. Let.
  • [Wan99] Weiqiang Wang, Dimension of a minimal nilpotent orbit, Proc. Amer. Math. Soc. 127 (1999), no. 3, 935-936. MR 1610801 (99f:17010), https://doi.org/10.1090/S0002-9939-99-04946-1
  • [WB12] Geordie Williamson and Tom Braden, Modular intersection cohomology complexes on flag varieties, Math. Z. 272 (2012), no. 3-4, 697-727. MR 2995137, https://doi.org/10.1007/s00209-011-0955-y
  • [Wil08] Geordie Williamson, Singular soergel bimodules. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg, 2008, available at http://www.freidok.uni-freiburg.de.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 55N33, 20C20

Retrieve articles in all journals with MSC (2010): 55N33, 20C20


Additional Information

Daniel Juteau
Affiliation: LMNO, Université de Caen Basse-Normandie, CNRS, BP 5186, 14032 Caen, France
Email: daniel.juteau@unicaen.fr

Carl Mautner
Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Email: cmautner@mpim-bonn.mpg.de

Geordie Williamson
Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Email: geordie@mpim-bonn.mpg.de

DOI: https://doi.org/10.1090/S0894-0347-2014-00804-3
Received by editor(s): November 5, 2012
Received by editor(s) in revised form: October 21, 2013
Published electronically: May 21, 2014
Additional Notes: The first author was supported by ANR Grant No. ANR-09-JCJC-0102-01.
The second author was supported by an NSF postdoctoral fellowship.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society