Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Fundamental groups of links of isolated singularities


Authors: Michael Kapovich and János Kollár
Journal: J. Amer. Math. Soc. 27 (2014), 929-952
MSC (2010): Primary 14B05, 14J17, 14F35; Secondary 20F05, 53C55
DOI: https://doi.org/10.1090/S0894-0347-2014-00807-9
Published electronically: May 22, 2014
MathSciNet review: 3230815
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study fundamental groups of projective varieties with normal crossing singularities and of germs of complex singularities. We prove that for every finitely-presented group $ G$ there is a complex projective surface $ S$ with simple normal crossing singularities only, so that the fundamental group of $ S$ is isomorphic to $ G$. We use this to construct 3-dimensional isolated complex singularities so that the fundamental group of the link is isomorphic to $ G$. Lastly, we prove that a finitely-presented group $ G$ is $ {\mathbb{Q}}$-superperfect (has vanishing rational homology in dimensions 1 and 2) if and only if $ G$ is isomorphic to the fundamental group of the link of a rational 6-dimensional complex singularity.


References [Enhancements On Off] (What's this?)

  • [ABC$^+$96] J. Amorós, M. Burger, K. Corlette, D. Kotschick, and D. Toledo, Fundamental groups of compact Kähler manifolds, Mathematical Surveys and Monographs, vol. 44, American Mathematical Society, Providence, RI, 1996. MR 1379330 (97d:32037)
  • [ABW09] D. Arapura, P. Bakhatry, and J. Włodarczyk, The combinatorial part of the cohomology of a singular variety (2009), available at arXiv:0902.4234.
  • [Art70] M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88-135. MR 0260747 (41 #5370)
  • [Ber02] A. J. Berrick, A topologist's view of perfect and acyclic groups, Invitations to geometry and topology, Oxf. Grad. Texts Math., vol. 7, Oxford Univ. Press, Oxford, 2002, pp. 1-28. MR 1967745 (2004c:20001)
  • [BG04] Martin R. Bridson and Fritz J. Grunewald, Grothendieck's problems concerning profinite completions and representations of groups, Ann. of Math. (2) 160 (2004), no. 1, 359-373. MR 2119723 (2005k:20069), https://doi.org/10.4007/annals.2004.160.359
  • [Cai61] Stewart S. Cairns, A simple triangulation method for smooth manifolds, Bull. Amer. Math. Soc. 67 (1961), 389-390. MR 0149491 (26 #6978)
  • [CHRR04] Colin M. Campbell, George Havas, Colin Ramsay, and Edmund F. Robertson, Nice efficient presentations for all small simple groups and their covers, LMS J. Comput. Math. 7 (2004), 266-283 (electronic). MR 2118175 (2006g:20046), https://doi.org/10.1112/S1461157000001121
  • [92] Classification of irregular varieties, Lecture Notes in Mathematics, vol. 1515, Springer-Verlag, Berlin, 1992. Minimal models and abelian varieties; Edited by E. Ballico, F. Catanese and C. Ciliberto. MR 1180332 (93d:14005)
  • [Cor92] Jon Michael Corson, Complexes of groups, Proc. London Math. Soc. (3) 65 (1992), no. 1, 199-224. MR 1162493 (93h:57003), https://doi.org/10.1112/plms/s3-65.1.199
  • [CS08] Kevin Corlette and Carlos Simpson, On the classification of rank-two representations of quasiprojective fundamental groups, Compos. Math. 144 (2008), no. 5, 1271-1331. MR 2457528 (2010i:14006), https://doi.org/10.1112/S0010437X08003618
  • [Dav08] Michael W. Davis, The geometry and topology of Coxeter groups, London Mathematical Society Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008. MR 2360474 (2008k:20091)
  • [DPS09] Alexandru Dimca, Ştefan Papadima, and Alexander I. Suciu, Topology and geometry of cohomology jump loci, Duke Math. J. 148 (2009), no. 3, 405-457. MR 2527322 (2011b:14047), https://doi.org/10.1215/00127094-2009-030
  • [DR93] A. N. Dranišnikov and D. Repovš, Embeddings up to homotopy type in Euclidean space, Bull. Austral. Math. Soc. 47 (1993), no. 1, 145-148. MR 1201430 (94d:57049), https://doi.org/10.1017/S0004972700012338
  • [Fer03] Daniel Ferrand, Conducteur, descente et pincement, Bull. Soc. Math. France 131 (2003), no. 4, 553-585 (French, with English and French summaries). MR 2044495 (2005a:13016)
  • [83] The birational geometry of degenerations, Progress in Mathematics, vol. 29, Birkhäuser, Boston, Mass., 1983. Based on papers presented at the Summer Algebraic Geometry Seminar held at Harvard University, Cambridge, Mass. June 11-July 29, 1981; Edited by Robert Friedman and David R. Morrison. MR 690261 (84a:14001)
  • [For97] Steven Fortune, Voronoi diagrams and Delaunay triangulations, Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., CRC, Boca Raton, FL, 1997, pp. 377-388. MR 1730176
  • [GM88] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724 (90d:57039)
  • [Gor80] Gerald Leonard Gordon, On a simplicial complex associated to the monodromy, Trans. Amer. Math. Soc. 261 (1980), no. 1, 93-101. MR 576865 (81j:32017), https://doi.org/10.2307/1998319
  • [Gro68] Alexander Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux $ (SGA$ $ 2)$, North-Holland Publishing Co., Amsterdam; Masson & Cie, Éditeur, Paris, 1968 (French). Augmenté d'un exposé par Michèle Raynaud; Séminaire de Géométrie Algébrique du Bois-Marie, 1962; Advanced Studies in Pure Mathematics, Vol. 2. MR 0476737 (57 #16294)
  • [GS75] Phillip Griffiths and Wilfried Schmid, Recent developments in Hodge theory: a discussion of techniques and results, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 31-127. MR 0419850 (54 #7868)
  • [Har77] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [Hat02] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354 (2002k:55001)
  • [Hig51] Graham Higman, A finitely generated infinite simple group, J. London Math. Soc. 26 (1951), 61-64. MR 0038348 (12,390c)
  • [Hir62] Morris W. Hirsch, Smooth regular neighborhoods, Ann. of Math. (2) 76 (1962), 524-530. MR 0149492 (26 #6979)
  • [Hop42] Heinz Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257-309 (German). MR 0006510 (3,316e)
  • [HW85] Jean-Claude Hausmann and Shmuel Weinberger, Caractéristiques d'Euler et groupes fondamentaux des variétés de dimension $ 4$, Comment. Math. Helv. 60 (1985), no. 1, 139-144 (French). MR 787667 (86m:57020), https://doi.org/10.1007/BF02567405
  • [Ish85] Shihoko Ishii, On isolated Gorenstein singularities, Math. Ann. 270 (1985), no. 4, 541-554. MR 776171 (86j:32024), https://doi.org/10.1007/BF01455303
  • [Kap04] Michael Kapovich, Conformally flat metrics on 4-manifolds, J. Differential Geom. 66 (2004), no. 2, 289-301. MR 2106126 (2005h:53072)
  • [Ker69] Michel A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72. MR 0253347 (40 #6562)
  • [KM63] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 0148075 (26 #5584)
  • [KM98a] Michael Kapovich and John J. Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 5-95 (1999). MR 1733326 (2001d:14024)
  • [KM98b] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)
  • [Kol93] János Kollár, Shafarevich maps and plurigenera of algebraic varieties, Invent. Math. 113 (1993), no. 1, 177-215. MR 1223229 (94m:14018), https://doi.org/10.1007/BF01244307
  • [Kol08] János Kollár, Quotients by finite equivalence relations (2008), available at arXiv:0812.3608.
  • [Kol11] János Kollár, New examples of terminal and log canonical singularities (2011), available at arXiv:1107.2864.
  • [Kul77] Vik. S. Kulikov, Degenerations of $ K3$ surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 5, 1008-1042, 1199 (Russian). MR 0506296 (58 #22087b)
  • [Liv05] Charles Livingston, Four-manifolds of large negative deficiency, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 1, 107-115. MR 2127231 (2005k:57040), https://doi.org/10.1017/S0305004104008011
  • [Mor78] John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137-204. MR 516917 (80e:55020)
  • [Mum61] David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5-22. MR 0153682 (27 #3643)
  • [Pay09] Sam Payne, Lecture at MSRI (2009). http://www.msri.org/web/msri/online-videos/-/video/showVideo/3674.
  • [Pay11] Sam Payne, Boundary complexes and weight filtrations (2011), available at arXiv:1109.4286.
  • [Per77] Ulf Persson, On degenerations of algebraic surfaces, Mem. Amer. Math. Soc. 11 (1977), no. 189, xv+144. MR 0466149 (57 #6030)
  • [Phi67] Anthony Phillips, Submersions of open manifolds, Topology 6 (1967), 171-206. MR 0208611 (34 #8420)
  • [PY07] Gopal Prasad and Sai-Kee Yeung, Fake projective planes, Invent. Math. 168 (2007), no. 2, 321-370. MR 2289867 (2008h:14038), https://doi.org/10.1007/s00222-007-0034-5
  • [Sim11] Carlos Simpson, Local systems on proper algebraic $ V$-manifolds, Pure Appl. Math. Q. 7 (2011), no. 4, Special Issue: In memory of Eckart Viehweg, 1675-1759. MR 2918179, https://doi.org/10.4310/PAMQ.2011.v7.n4.a27
  • [Ste83] J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, Singularities, Part 2 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513-536. MR 713277 (85d:32044)
  • [Ste08] D. A. Stepanov, A note on resolution of rational and hypersurface singularities, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2647-2654. MR 2399025 (2009g:32060), https://doi.org/10.1090/S0002-9939-08-09289-7
  • [Tak03] Shigeharu Takayama, Local simple connectedness of resolutions of log-terminal singularities, Internat. J. Math. 14 (2003), no. 8, 825-836. MR 2013147 (2004m:14023), https://doi.org/10.1142/S0129167X0300196X
  • [Thu07] Amaury Thuillier, Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d'homotopie de certains schémas formels, Manuscripta Math. 123 (2007), no. 4, 381-451 (French, with English summary). MR 2320738 (2008g:14038), https://doi.org/10.1007/s00229-007-0094-2
  • [Tol93] Domingo Toledo, Projective varieties with non-residually finite fundamental group, Inst. Hautes Études Sci. Publ. Math. 77 (1993), 103-119. MR 1249171 (94k:14008)
  • [Wło03] Jarosław Włodarczyk, Toroidal varieties and the weak factorization theorem, Invent. Math. 154 (2003), no. 2, 223-331. MR 2013783 (2004m:14113), https://doi.org/10.1007/s00222-003-0305-8

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14B05, 14J17, 14F35, 20F05, 53C55

Retrieve articles in all journals with MSC (2010): 14B05, 14J17, 14F35, 20F05, 53C55


Additional Information

Michael Kapovich
Affiliation: Department of Mathematics, University of California, Davis, California 95616
Email: kapovich@math.ucdavis.edu

János Kollár
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544-1000
Email: kollar@math.princeton.edu

DOI: https://doi.org/10.1090/S0894-0347-2014-00807-9
Received by editor(s): January 9, 2012
Received by editor(s) in revised form: September 19, 2012, February 19, 2013, and February 20, 2013
Published electronically: May 22, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society