Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

Monotonicity of entropy for real multimodal maps


Authors: Henk Bruin and Sebastian van Strien
Journal: J. Amer. Math. Soc. 28 (2015), 1-61
MSC (2010): Primary 37E05; Secondary 37B40
DOI: https://doi.org/10.1090/S0894-0347-2014-00795-5
Published electronically: June 23, 2014
MathSciNet review: 3264762
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1992, Milnor posed the Monotonicity Conjecture that within a family of real multimodal polynomial interval maps with only real critical points, the isentropes, i.e., the sets of parameters for which the topological entropy is constant, are connected. This conjecture was already proved in the mid-1980s for quadratic maps by a number of different methods, see A. Douady (1993, 1995), A. Douady and J.H. Hubbard (1984, 1985), W. de Melo and S. van Strein (1993), J. Milnor and W. Thurston (1986, 1988), and M. Tsujii (2000). In 2000, Milnor and Tresser, provided a proof for the case of cubic maps. In this paper we will prove the general case of this 20 year old conjecture.


References [Enhancements On Off] (What's this?)

  • [1] Louis Block and James Keesling, Computing the topological entropy of maps of the interval with three monotone pieces, J. Statist. Phys. 66 (1992), no. 3-4, 755-774. MR 1151977 (93f:58121), https://doi.org/10.1007/BF01055699
  • [2] Louis Block and Dennis Ledis, Topological conjugacy, transitivity, and patterns, Topology and its Applications 167 (2014), 53-61.
  • [3] Henk Bruin, Non-monotonicity of entropy of interval maps, Phys. Lett. A 202 (1995), no. 5-6, 359-362. MR 1336987 (96g:58051), https://doi.org/10.1016/0375-9601(95)00362-7
  • [4] Henk Bruin and S. van Strien, On the structure of isentropes of polynomial maps, Dynamical Systems: An International Journal 28 (2013), no. 5-6, 381-392.
  • [5] Philip Boyland, Semiconjugacies to angle-doubling, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1299-1307 (electronic). MR 2199172 (2008m:37065), https://doi.org/10.1090/S0002-9939-05-08381-4
  • [6] Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383 (94h:30033)
  • [7] Davoud Cheraghi and Sebastian van Strien, Towards Tresser's conjecture. In preparation.
  • [8] Silvina P. Dawson, Roza Galeeva, John Milnor, and Charles Tresser, A monotonicity conjecture for real cubic maps, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 165-183. MR 1351522 (96g:58132)
  • [9] Adrien Douady, Topological entropy of unimodal maps: monotonicity for quadratic polynomials, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 65-87. MR 1351519 (96g:58106)
  • [10] Adrien Douady and John Hamal Hubbard, Etude dynamique des polynômes quadratiques complexes I & II, Publ. Mat. d'Orsay (1984 & 1985).
  • [11] Adam Epstein, Transversality in holomorphic dynamics. Preliminary version available from http://www.warwick.ac.uk/$ \sim $mases/Transversality.pdf.
  • [12] Roza Galeeva, Marco Martens, and Charles Tresser, Inducing, slopes, and conjugacy classes, Israel J. Math. 99 (1997), 123-147. MR 1469090 (98i:58080), https://doi.org/10.1007/BF02760679
  • [13] Jacek Graczyk and Grzegorz Światek, Generic hyperbolicity in the logistic family, Ann. of Math. (2) 146 (1997), no. 1, 1-52. MR 1469316 (99b:58079), https://doi.org/10.2307/2951831
  • [14] Peter Haïssinsky, Chirurgie parabolique, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 2, 195-198 (French, with English and French summaries). MR 1645124 (99i:58127), https://doi.org/10.1016/S0764-4442(98)80088-8
  • [15] Peter Haïssinsky, Déformation $ J$-équivalente de polynômes géometriquement finis, Fund. Math. 163 (2000), no. 2, 131-141 (French, with English summary). MR 1752100 (2001c:37044)
  • [16] Christopher Arthur Heckman, Monotonicity and the construction of quasiconformal conjugacies in the real cubic family, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)-State University of New York at Stony Brook. MR 2695156
  • [17] Franz Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II, Israel J. Math. 38 (1981), no. 1-2, 107-115. MR 599481 (82c:28039b), https://doi.org/10.1007/BF02761854
  • [18] Ittai Kan, Hüseyin Koçak, and James A. Yorke, Antimonotonicity: concurrent creation and annihilation of periodic orbits, Ann. of Math. (2) 136 (1992), no. 2, 219-252. MR 1185119 (94c:58135), https://doi.org/10.2307/2946605
  • [19] Sergiy Kolyada, One-parameter families of mappings of an interval with a negative Schwartzian derivative which violate the monotonicity of bifurcations, Ukrain. Mat. Zh. 41 (1989), no. 2, 258-261, 288 (Russian); English transl., Ukrainian Math. J. 41 (1989), no. 2, 230-233. MR 992831 (90c:58085), https://doi.org/10.1007/BF01060393
  • [20] Oleg Kozlovski, Weixiao Shen, and Sebastian van Strien, Rigidity for real polynomials, Ann. of Math. (2) 165 (2007), no. 3, 749-841. MR 2335796 (2008m:37063), https://doi.org/10.4007/annals.2007.165.749
  • [21] O. Kozlovski, W. Shen, and S. van Strien, Density of hyperbolicity in dimension one, Ann. of Math. (2) 166 (2007), no. 1, 145-182. MR 2342693 (2008j:37081), https://doi.org/10.4007/annals.2007.166.145
  • [22] Genadi Levin, Multipliers of periodic orbits in spaces of rational maps, Ergodic Theory Dynam. Systems 31 (2011), no. 1, 197-243. MR 2755929 (2012a:37095), https://doi.org/10.1017/S0143385709001059
  • [23] Mikhail Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997), no. 2, 185-247, 247-297. MR 1459261 (98e:58145), https://doi.org/10.1007/BF02392694
  • [24] Robert MacKay and Charles Tresser, Boundary of topological chaos for bimodal maps of the interval, J. London Math. Soc. (2) 37 (1988), no. 1, 164-181. MR 921755 (89b:58155), https://doi.org/10.1112/jlms/s2-37.121.164
  • [25] Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365 (96b:58097)
  • [26] Welington de Melo and Sebastian van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 25, Springer-Verlag, Berlin, 1993. MR 1239171 (95a:58035)
  • [27] Nick Metropolis, Myron Stein, and Paul Stein, On finite limit sets for transformations on the unit interval, J. Combinatorial Theory Ser. A 15 (1973), 25-44. MR 0316636 (47 #5183)
  • [28] John Milnor, Remarks on iterated cubic maps, Experiment. Math. 1 (1992), no. 1, 5-24. MR 1181083 (94c:58096)
  • [29] John Milnor, Hyperbolic components, Conformal dynamics and hyperbolic geometry, Contemp. Math., vol. 573, Amer. Math. Soc., Providence, RI, 2012, pp. 183-232. With an appendix by A. Poirier. MR 2964079, https://doi.org/10.1090/conm/573/11428
  • [30] John Milnor and William Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986-87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465-563. MR 970571 (90a:58083), https://doi.org/10.1007/BFb0082847
  • [31] John Milnor and Charles Tresser, On entropy and monotonicity for real cubic maps, Comm. Math. Phys. 209 (2000), no. 1, 123-178. With an appendix by Adrien Douady and Pierrette Sentenac. MR 1736945 (2001e:37048), https://doi.org/10.1007/s002200050018
  • [32] Michał Misiurewicz, Continuity of entropy revisited, Dynamical systems and applications, World Sci. Ser. Appl. Anal., vol. 4, World Sci. Publ., River Edge, NJ, 1995, pp. 495-503. MR 1372979 (96m:58142), https://doi.org/10.1142/9789812796417_0031
  • [33] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), no. 1, 45-63. MR 579440 (82a:58030)
  • [34] Helena E. Nusse and James A. Yorke, Period halving for $ x_{n+1}=MF(x_n)$ where $ F$ has negative Schwarzian derivative, Phys. Lett. A 127 (1988), no. 6-7, 328-334. MR 934486 (89f:58104), https://doi.org/10.1016/0375-9601(88)90579-8
  • [35] W. Parry, On the $ \beta $-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), 401-416 (English, with Russian summary). MR 0142719 (26 #288)
  • [36] Anca Radulescu, The connected isentropes conjecture in a space of quartic polynomials, Discrete Contin. Dyn. Syst. 19 (2007), no. 1, 139-175. MR 2318278 (2009j:37022), https://doi.org/10.3934/dcds.2007.19.139
  • [37] Lasse Rempe and Sebastian van Strien, Density of hyperbolicity for real transcendental entire functions with real singular values. http://arxiv.org/abs/1005.4627.
  • [38] Weixiao Shen, On the metric properties of multimodal interval maps and $ C^2$ density of Axiom A, Invent. Math. 156 (2004), no. 2, 301-403. MR 2052610 (2005d:37078), https://doi.org/10.1007/s00222-003-0343-2
  • [39] Sebastian van Strien, One-dimensional dynamics in the new millennium, Discrete Contin. Dyn. Syst. 27 (2010), no. 2, 557-588. MR 2600680 (2011j:37071), https://doi.org/10.3934/dcds.2010.27.557
  • [40] Sebastian van Strien, One-parameter families of smooth interval maps: density of hyperbolicity and robust chaos, Proc. Amer. Math. Soc. 138 (2010), no. 12, 4443-4446. MR 2680068 (2012b:37114), https://doi.org/10.1090/S0002-9939-2010-10446-X
  • [41] Sebastian van Strien, Milnor's Conjecture on Monotonicity of Topological Entropy: results and questions, Frontiers in Complex Dynamics: Celebrating John Milnor's 80th Birthday’, Princeton University Press. Editor(s): Bonifant, Lyubich, Sutherland, pp. 673-687. ISBN:9780691159294.
  • [42] Masato Tsujii, A simple proof for monotonicity of entropy in the quadratic family, Ergodic Theory Dynam. Systems 20 (2000), no. 3, 925-933. MR 1764936 (2001g:37048), https://doi.org/10.1017/S014338570000050X
  • [43] Yosef Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285-300. MR 889979 (90g:58008), https://doi.org/10.1007/BF02766215
  • [44] Saeed Zakeri, On critical points of proper holomorphic maps on the unit disk, Bull. London Math. Soc. 30 (1998), no. 1, 62-66. MR 1479037 (99d:30009), https://doi.org/10.1112/S0024609397003706
  • [45] Anna Zdunik, Entropy of transformations of the unit interval, Fund. Math. 124 (1984), no. 3, 235-241. MR 774514 (86i:58083)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 37E05, 37B40

Retrieve articles in all journals with MSC (2010): 37E05, 37B40


Additional Information

Henk Bruin
Affiliation: Faculty of Mathematics, University of Vienna, Oskar Morgenstern Platz 1, A-1090 Vienna, Austria
Email: henk.bruin@univie.ac.at

Sebastian van Strien
Affiliation: Department of Mathematics, Imperial College, 180 Queen’s Gate, London SW7 2AZ, United Kingdom
Email: s.van-strien@imperial.ac.uk

DOI: https://doi.org/10.1090/S0894-0347-2014-00795-5
Received by editor(s): May 20, 2009
Received by editor(s) in revised form: June 12, 2010, September 13, 2012, and October 3, 2013
Published electronically: June 23, 2014
Additional Notes: The first author was supported by EPSRC [Grants GR/S91147/01 and EP/F037112/1].
The second author was supported by a Royal Society Leverhulme Trust Senior Research Fellowship, a Visitor’s Travel grant from the Netherlands Organisation for Scientific Research (NWO) and the Marie Curie grant MRTN-CT-2006-035651 (CODY)
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society