Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 

 

Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches $ 2\pi$ and completion of the main proof


Authors: Xiuxiong Chen, Simon Donaldson and Song Sun
Journal: J. Amer. Math. Soc. 28 (2015), 235-278
MSC (2010): Primary 53C55
Published electronically: March 28, 2014
MathSciNet review: 3264768
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is the third and final article in a series which prove the fact that a K-stable Fano manifold admits a Kähler-Einstein metric. In this paper we consider the Gromov-Hausdorff limits of metrics with cone singularities in the case when the limiting cone angle approaches 2$ \pi $. We also put all our technical results together to complete the proof of the main theorem.


References [Enhancements On Off] (What's this?)

  • [1] Michael T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), no. 2, 429–445. MR 1074481, 10.1007/BF01233434
  • [2] Thierry Aubin, Équations du type Monge-Ampère sur les variétés kähleriennes compactes, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 3, Aiii, A119–A121. MR 0433520
  • [3] Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, 10.1007/BF02392348
  • [4] R. Berman, K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics. arXiv: 1205.6214.
  • [5] R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi, Kähler-Ricci flow and Ricci iteration on log-Fano varieties. arXiv:1111.7158.
  • [6] B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem. arXiv: 1103.0923
  • [7] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom. 54 (2000), no. 1, 13–35. MR 1815410
  • [8] Eugenio Calabi, On Kähler manifolds with vanishing canonical class, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 78–89. MR 0085583
  • [9] Eugenio Calabi, Extremal Kähler metrics. II, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 95–114. MR 780039
  • [10] Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189–234. MR 1863016
  • [11] X-X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics and stability. arXiv: 1210.7494. To appear in Int. Math. Res. Not (2013).
  • [12] X-X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metric on Fano manifolds, I: approximation of metrics with cone singularities. arXiv:1211.4566.
  • [13] X-X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metric on Fano manifolds, II: limits with cone angle less than $ 2\pi $. arXiv:1212.4714.
  • [14] Xiuxiong Chen and Bing Wang, Space of Ricci flows I, Comm. Pure Appl. Math. 65 (2012), no. 10, 1399–1457. MR 2957704, 10.1002/cpa.21414
  • [15] Jean-Pierre Demailly and János Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 4, 525–556 (English, with English and French summaries). MR 1852009, 10.1016/S0012-9593(01)01069-2
  • [16] Wei Yue Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), no. 3, 463–471. MR 967024, 10.1007/BF01460045
  • [17] Wei Yue Ding and Gang Tian, Kähler-Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992), no. 2, 315–335. MR 1185586, 10.1007/BF01231335
  • [18] S. K. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289–349. MR 1988506
  • [19] S. K. Donaldson, Stability, birational transformations and the Kahler-Einstein problem, Surveys in differential geometry. Vol. XVII, Surv. Differ. Geom., vol. 17, Int. Press, Boston, MA, 2012, pp. 203–228. MR 3076062, 10.4310/SDG.2012.v17.n1.a5
  • [20] S. K. Donaldson, Kähler metrics with cone singularities along a divisor, Essays in mathematics and its applications, Springer, Heidelberg, 2012, pp. 49–79. MR 2975584, 10.1007/978-3-642-28821-0_4
  • [21] S. Donaldson and S. Sun, Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. arXiv:1206.2609.
  • [22] Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639. MR 2505296, 10.1090/S0894-0347-09-00629-8
  • [23] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437–443. MR 718940, 10.1007/BF01388438
  • [24] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364
  • [25] Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7–136. MR 1375255
  • [26] Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639
  • [27] T. Jeffres, R. Mazzeo, and Y. Rubinstein, Kähler-Einstein metrics with edge singularities. arXiv:1105.5216
  • [28] Robert Lazarsfeld, Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49, Springer-Verlag, Berlin, 2004. Positivity for vector bundles, and multiplier ideals. MR 2095472
  • [29] C. Li and S. Sun, Conical Kähler-Einstein metric revisited. arXiv:1207.5011
  • [30] Long Li, A note on general Bando-Mabuchi uniqueness theorem. preprint.
  • [31] Peter Li, Lecture notes on geometric analysis, Lecture Notes Series, vol. 6, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993. MR 1320504
  • [32] Peng Lu, A local curvature bound in Ricci flow, Geom. Topol. 14 (2010), no. 2, 1095–1110. MR 2629901, 10.2140/gt.2010.14.1095
  • [33] Yozô Matsushima, Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145–150 (French). MR 0094478
  • [34] Y. Odaka and S. Sun, Testing log K-stability by blowing up formalism. arXiv: 1112.1353
  • [35] G. Perelman, Ricci flow with surgery on three-manifolds. arXiv: 0303109.
  • [36] Yum Tong Siu, Lectures on Hermitian-Einstein metrics for stable bundles and Kähler-Einstein metrics, DMV Seminar, vol. 8, Birkhäuser Verlag, Basel, 1987. MR 904673
  • [37] J. Song and X. Wang, The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. arXiv:1207.483
  • [38] Jacopo Stoppa, K-stability of constant scalar curvature Kähler manifolds, Adv. Math. 221 (2009), no. 4, 1397–1408. MR 2518643, 10.1016/j.aim.2009.02.013
  • [39] Song Sun, Note on K-stability of pairs, Math. Ann. 355 (2013), no. 1, 259–272. MR 3004583, 10.1007/s00208-012-0788-y
  • [40] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101–172. MR 1055713, 10.1007/BF01231499
  • [41] Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1–37. MR 1471884, 10.1007/s002220050176
  • [42] G. Tian and B. Wang, On the structure of almost Einstein manifolds. arXiv: 1202.2912.
  • [43] Neil S. Trudinger, Regularity of solutions of fully nonlinear elliptic equations, Boll. Un. Mat. Ital. A (6) 3 (1984), no. 3, 421–430. MR 769173
  • [44] Karen K. Uhlenbeck, Connections with 𝐿^{𝑝} bounds on curvature, Comm. Math. Phys. 83 (1982), no. 1, 31–42. MR 648356
  • [45] B. Wang, Ricci flow on orbifold. arXiv:1003.0151.
  • [46] Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, 10.1002/cpa.3160310304
  • [47] Shing-Tung Yau, Open problems in geometry, Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990) Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 1–28. MR 1216573

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 53C55

Retrieve articles in all journals with MSC (2010): 53C55


Additional Information

Xiuxiong Chen
Affiliation: Department of Mathematics, Stony Brook University, Stony Brook, New York 11794-3651 – and – School of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
Email: xiu@math.sunysb.edu

Simon Donaldson
Affiliation: Department of Mathematics, Imperial College London, London, U.K.
Email: s.donaldson@imperial.ac.uk

Song Sun
Affiliation: Department of Mathematics, Imperial College London, London, U.K.
Email: s.sun@imperial.ac.uk

DOI: https://doi.org/10.1090/S0894-0347-2014-00801-8
Received by editor(s): March 8, 2013
Received by editor(s) in revised form: October 4, 2013, and January 13, 2014
Published electronically: March 28, 2014
Additional Notes: The first author was partly supported by National Science Foundation grant No 1211652; the last two authors were partly supported by the European Research Council award No 247331.
Article copyright: © Copyright 2014 American Mathematical Society