Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On Jordan-Hölder series of some locally analytic representations


Authors: Sascha Orlik and Matthias Strauch
Journal: J. Amer. Math. Soc. 28 (2015), 99-157
MSC (2010): Primary 22E50, 11S37, 22E35; Secondary 20G05, 20G25, 17B35, 17B15
DOI: https://doi.org/10.1090/S0894-0347-2014-00803-1
Published electronically: July 2, 2014
MathSciNet review: 3264764
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a split reductive $ p$-adic group. This paper is about the Jordan-Hölder series of locally analytic $ G$-representations which are induced from locally algebraic representations of a parabolic subgroup $ P \subset G$. We construct for every representation $ M$ of $ {\rm Lie}(G)$ in the BGG-category $ {\mathcal O}$, which is equipped with an algebraic $ P$-action, and for every smooth $ P$-representation $ V$, a locally analytic representation $ {\mathcal F}^G_P(M,V)$ of $ G$. This gives rise to a bi-functor to the category of locally analytic representations. We prove that it is exact and give a criterion for the topological irreducibility of $ {\mathcal F}^G_P(M,V)$ in terms of $ M$ and $ V$.


References [Enhancements On Off] (What's this?)

  • [1] H. H. Andersen and N. Lauritzen, Twisted Verma modules, Studies in memory of Issai Schur (Chevaleret/Rehovot, 2000) Progr. Math., vol. 210, Birkhäuser Boston, Boston, MA, 2003, pp. 1-26. MR 1985191 (2004d:17005)
  • [2] I. N. Bernšteĭn, I. M. Gelfand, and S. I. Gelfand, A certain category of $ {\mathfrak{g}}$-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1-8 (Russian). MR 0407097 (53 #10880)
  • [3] A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403 (2000j:22015)
  • [4] Raoul Bott, Homogeneous vector bundles, Ann. Math. (2) 66 (1957), 203-248. MR 0089473 (19,681d)
  • [5] Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626 (94k:20020)
  • [6] W. Casselman, On a $ p$-adic vanishing theorem of Garland, Bull. Amer. Math. Soc. 80 (1974), 1001-1004. MR 0354933 (50 #7410)
  • [7] Ivan Dimitrov, Olivier Mathieu, and Ivan Penkov, On the structure of weight modules, Trans. Amer. Math. Soc. 352 (2000), no. 6, 2857-2869. MR 1624174 (2000j:17008), https://doi.org/10.1090/S0002-9947-00-02390-4
  • [8] J. D. Dixon, M. P. F. du Sautoy, A. Mann, and D. Segal, Analytic pro-$ p$ groups, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 61, Cambridge University Press, Cambridge, 1999. MR 1720368 (2000m:20039)
  • [9] Emerton M., Jacquet modules of locally analytic representations of $ p$-adic reductive groups II. The relation to parabolic induction. Preprint.
  • [10] Emerton M., Locally analytic vectors in representations of locally $ p$-adic analytic groups. To appear in Memoirs AMS.
  • [11] Christian Tobias Féaux de Lacroix, Einige Resultate über die topologischen Darstellungen $ p$-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem $ p$-adischen Körper, Schriftenreihe des Mathematischen Instituts der Universität Münster. 3. Serie, Heft 23, Schriftenreihe Math. Inst. Univ. Münster 3. Ser., vol. 23, Univ. Münster, Münster, 1999, pp. x+111 (German). MR 1691735 (2000k:22021)
  • [12] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157 (57 #3116)
  • [13] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York, 1978. Second printing, revised. MR 499562 (81b:17007)
  • [14] James E. Humphreys, Representations of semisimple Lie algebras in the BGG category $ \mathcal {O}$, Graduate Studies in Mathematics, vol. 94, American Mathematical Society, Providence, RI, 2008. MR 2428237 (2009f:17013)
  • [15] Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057 (2004h:20061)
  • [16] Owen T. R. Jones, An analogue of the BGG resolution for locally analytic principal series, J. Number Theory 131 (2011), no. 9, 1616-1640. MR 2802138, https://doi.org/10.1016/j.jnt.2011.02.010
  • [17] Anthony W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes, vol. 34, Princeton University Press, Princeton, NJ, 1988. MR 938524 (89j:22034)
  • [18] Jan Kohlhaase, Invariant distributions on $ p$-adic analytic groups, Duke Math. J. 137 (2007), no. 1, 19-62. MR 2309143 (2008j:22024), https://doi.org/10.1215/S0012-7094-07-13712-8
  • [19] Jan Kohlhaase, The cohomology of locally analytic representations, J. Reine Angew. Math. 651 (2011), 187-240. MR 2774315, https://doi.org/10.1515/CRELLE.2011.013
  • [20] Shrawan Kumar, Kac-Moody groups, their flag varieties and representation theory, Progress in Mathematics, vol. 204, Birkhäuser Boston Inc., Boston, MA, 2002. MR 1923198 (2003k:22022)
  • [21] J. Lepowsky, Generalized Verma modules, the Cartan-Helgason theorem, and the Harish-Chandra homomorphism, J. Algebra 49 (1977), no. 2, 470-495. MR 0463360 (57 #3312)
  • [22] Yasuo Morita, A $ p$-adic theory of hyperfunctions. I, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 1-24. MR 613933 (84b:12025), https://doi.org/10.2977/prims/1195186702
  • [23] Yasuo Morita, Analytic representations of $ {\rm SL}_2$ over a $ {\mathfrak{p}}$-adic number field. II, Automorphic forms of several variables (Katata, 1983) Progr. Math., vol. 46, Birkhäuser Boston, Boston, MA, 1984, pp. 282-297. MR 763019 (86j:22027)
  • [24] Sascha Orlik, Equivariant vector bundles on Drinfeld's upper half space, Invent. Math. 172 (2008), no. 3, 585-656. MR 2393081 (2009c:22019), https://doi.org/10.1007/s00222-008-0112-3
  • [25] Sascha Orlik and Matthias Strauch, On the irreducibility of locally analytic principal series representations, Represent. Theory 14 (2010), 713-746. MR 2738585 (2012e:22025), https://doi.org/10.1090/S1088-4165-2010-00387-8
  • [26] Pohlkamp K., Randwerte holomorpher Funktionen auf $ p$-adischen symmetrischen Räumen (2004). Diplomarbeit, Universität Münster.
  • [27] Tobias Schmidt, Auslander regularity of $ p$-adic distribution algebras, Represent. Theory 12 (2008), 37-57. MR 2375595 (2009b:22018), https://doi.org/10.1090/S1088-4165-08-00323-3
  • [28] P. Schneider and U. Stuhler, The cohomology of $ p$-adic symmetric spaces, Invent. Math. 105 (1991), no. 1, 47-122. MR 1109620 (92k:11057), https://doi.org/10.1007/BF01232257
  • [29] P. Schneider and J. Teitelbaum, $ U({\mathfrak{g}})$-finite locally analytic representations, Represent. Theory 5 (2001), 111-128 (electronic). With an appendix by Dipendra Prasad. MR 1835001 (2002e:22023), https://doi.org/10.1090/S1088-4165-01-00109-1
  • [30] Peter Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. MR 1869547 (2003a:46106)
  • [31] Peter Schneider, Continuous representation theory of $ p$-adic Lie groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 1261-1282. MR 2275644 (2008a:22023)
  • [32] Peter Schneider and Jeremy Teitelbaum, Locally analytic distributions and $ p$-adic representation theory, with applications to $ {\rm GL}_2$, J. Amer. Math. Soc. 15 (2002), no. 2, 443-468 (electronic). MR 1887640 (2003b:11132), https://doi.org/10.1090/S0894-0347-01-00377-0
  • [33] Peter Schneider and Jeremy Teitelbaum, $ p$-adic boundary values, Astérisque 278 (2002), 51-125. Cohomologies $ p$-adiques et applications arithmétiques, I. MR 1922824 (2003k:14023)
  • [34] Peter Schneider and Jeremy Teitelbaum, Algebras of $ p$-adic distributions and admissible representations, Invent. Math. 153 (2003), no. 1, 145-196. MR 1990669 (2004g:22015), https://doi.org/10.1007/s00222-002-0284-1
  • [35] Peter Schneider and Jeremy Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297-326 (electronic). MR 2133762 (2006a:22016), https://doi.org/10.1090/S1088-4165-05-00277-3
  • [36] Benjamin Schraen, Représentations localement analytiques de $ {\rm GL}_3(\mathbb{Q}_p)$, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 43-145 (French, with English and French summaries). MR 2760195 (2012h:22023)
  • [37] Teitelbaum J., Admissible analytic representations. An introduction to three questions (2006). Talk at the Harvard Eigensemester.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 22E50, 11S37, 22E35, 20G05, 20G25, 17B35, 17B15

Retrieve articles in all journals with MSC (2010): 22E50, 11S37, 22E35, 20G05, 20G25, 17B35, 17B15


Additional Information

Sascha Orlik
Affiliation: Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
Email: orlik@math.uni-wuppertal.de

Matthias Strauch
Affiliation: Indiana University, Department of Mathematics, Rawles Hall, Bloomington, Indiana 47405
Email: mstrauch@indiana.edu

DOI: https://doi.org/10.1090/S0894-0347-2014-00803-1
Received by editor(s): February 13, 2013
Received by editor(s) in revised form: December 4, 2013, and December 17, 2013
Published electronically: July 2, 2014
Additional Notes: M. S. would like to acknowledge the support of the National Science Foundation (award numbers DMS-0902103 and DMS-1202303).
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society