Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)



Solution to a non-Archimedean Monge-Ampère equation

Authors: Sébastien Boucksom, Charles Favre and Mattias Jonsson
Journal: J. Amer. Math. Soc. 28 (2015), 617-667
MSC (2010): Primary 32P05; Secondary 32U05
Published electronically: May 22, 2014
MathSciNet review: 3327532
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a smooth projective Berkovich space over a complete discrete valuation field $ K$ of residue characteristic zero, and assume that $ X$ is defined over a function field admitting $ K$ as a completion. Let further $ \mu $ be a positive measure on $ X$ and $ L$ be an ample line bundle such that the mass of $ \mu $ is equal to the degree of $ L$. We prove the existence of a continuous semipositive metric whose associated measure is equal to $ \mu $ in the sense of Zhang and Chambert-Loir. We do this under a technical assumption on the support of $ \mu $, which is, for instance, fulfilled if the support is a finite set of divisorial points. Our method draws on analogs of the variational approach developed to solve complex Monge-Ampère equations on compact Kähler manifolds by Berman, Guedj, Zeriahi, and the first named author, and of Kołodziej's $ C^0$-estimates. It relies in a crucial way on the compactness properties of singular semipositive metrics, as defined and studied in a companion article.

References [Enhancements On Off] (What's this?)

  • [Ale38] Alexandrov A. D., On the theory of mixed volumes of convex bodies III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies. (Russian), Mat. Sbornik 3 (1938), 27-44. English translation available in selected works. Part I. Selected scientific papers. Gordon and Breach, Amsterdam, 1996.
  • [BR10] Matthew Baker and Robert Rumely, Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, vol. 159, American Mathematical Society, Providence, RI, 2010. MR 2599526 (2012d:37213)
  • [Ber90] Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709 (91k:32038)
  • [Ber99] Vladimir G. Berkovich, Smooth $ p$-adic analytic spaces are locally contractible, Invent. Math. 137 (1999), no. 1, 1-84. MR 1702143 (2000i:14028),
  • [BB10] Robert Berman and Sébastien Boucksom, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math. 181 (2010), no. 2, 337-394. MR 2657428 (2011h:32021),
  • [BBGZ13] Robert J. Berman, Sébastien Boucksom, Vincent Guedj, and Ahmed Zeriahi, A variational approach to complex Monge-Ampère equations, Publ. Math. Inst. Hautes Études Sci. 117 (2013), 179-245. MR 3090260,
  • [BT82] Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1-40. MR 674165 (84d:32024),
  • [BT87] Eric Bedford and B. A. Taylor, Fine topology, Šilov boundary, and $ (dd^c)^n$, J. Funct. Anal. 72 (1987), no. 2, 225-251. MR 886812 (88g:32033),
  • [BGS95] S. Bloch, H. Gillet, and C. Soulé, Non-Archimedean Arakelov theory, J. Algebraic Geom. 4 (1995), no. 3, 427-485. MR 1325788 (96g:14019)
  • [Bło03] Zbigniew Błocki, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 6, 1697-1701. MR 2021054 (2004m:32073),
  • [BK07] Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089-2093 (electronic). MR 2299485 (2008a:32029),
  • [BDPP13] Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2013), no. 2, 201-248. MR 3019449,
  • [BEGZ10] Sébastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Monge-Ampère equations in big cohomology classes, Acta Math. 205 (2010), no. 2, 199-262. MR 2746347 (2011k:32049),
  • [BFJ08] Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 449-494. MR 2426355 (2009g:32068),
  • [BFJ09] Sébastien Boucksom, Charles Favre, and Mattias Jonsson, Differentiability of volumes of divisors and a problem of Teissier, J. Algebraic Geom. 18 (2009), no. 2, 279-308. MR 2475816 (2009m:14005),
  • [BPS13] Burgos J. I., Philippon P., and Sombra M., Arithmetic geometry of toric varieties. Metrics, measures, and heights, available at arXiv:1105.5584. To appear in Astérisque, 212 pages.
  • [Ceg98] Urban Cegrell, Pluricomplex energy, Acta Math. 180 (1998), no. 2, 187-217. MR 1638768 (99h:32016),
  • [CL06] Antoine Chambert-Loir, Mesures et équidistribution sur les espaces de Berkovich, J. Reine Angew. Math. 595 (2006), 215-235 (French). MR 2244803 (2008b:14040),
  • [CL11] Antoine Chambert-Loir, Heights and measures on analytic spaces. A survey of recent results, and some remarks, Motivic integration and its interactions with model theory and non-Archimedean geometry. Volume II, London Math. Soc. Lecture Note Ser., vol. 384, Cambridge University Press, Cambridge, 2011, pp. 1-50. MR 2885340
  • [CLD12] Chambert-Loir A. and Ducros A., Formes différentielles réelles et courants sur les espaces de Berkovich, available at arXiv:1204.6277.
  • [Dem92] Jean-Pierre Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (1992), no. 3, 361-409. MR 1158622 (93e:32015)
  • [Din09] Sławomir Dinew, Uniqueness in $ \mathcal {E}(X,\omega )$, J. Funct. Anal. 256 (2009), no. 7, 2113-2122. MR 2498760 (2010e:32037),
  • [EGA] Grothendieck A., Éléments de géométrie algébrique, Publ. Math. IHES.
  • [EGZ09] Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Singular Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), no. 3, 607-639. MR 2505296 (2010k:32031),
  • [FJ04] Charles Favre and Mattias Jonsson, The valuative tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, 2004. MR 2097722 (2006a:13008)
  • [Fol99] Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. MR 1681462 (2000c:00001)
  • [Ful93] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037 (94g:14028)
  • [Ful98] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323 (99d:14003)
  • [Gub08] Walter Gubler, Equidistribution over function fields, Manuscripta Math. 127 (2008), no. 4, 485-510. MR 2457191 (2010a:14052),
  • [Gub13] Walter Gubler, A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry, Contemp. Math., vol. 589, Amer. Math. Soc., Providence, RI, 2013, pp. 125-189. MR 3088913,
  • [Gub13] Gubler W., Forms and currents on the analytification of an algebraic variety (after Chambert-Loir and Ducros). arXiv:1303.7364.
  • [GZ05] Vincent Guedj and Ahmed Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), no. 4, 607-639. MR 2203165 (2006j:32041),
  • [GZ07] Vincent Guedj and Ahmed Zeriahi, The weighted Monge-Ampère energy of quasiplurisubharmonic functions, J. Funct. Anal. 250 (2007), no. 2, 442-482. MR 2352488 (2008h:32056),
  • [JM12] Mattias Jonsson and Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 6, 2145-2209 (2013) (English, with English and French summaries). MR 3060755,
  • [KKMSD73] G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518 (49 #299)
  • [Koł98] Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69-117. MR 1618325 (99h:32017),
  • [Koł03] Sławomir Kołodziej, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J. 52 (2003), no. 3, 667-686. MR 1986892 (2004i:32062),
  • [KT] Kontsevich M. and Tschinkel Y., Non-Archimedean Kähler geometry. Unpublished.
  • [Laz04] Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471 (2005k:14001a)
  • [Liu11] Yifeng Liu, A non-Archimedean analogue of the Calabi-Yau theorem for totally degenerate abelian varieties, J. Differential Geom. 89 (2011), no. 1, 87-110. MR 2863913
  • [Mat57] T. Matsusaka, The criteria for algebraic equivalence and the torsion group, Amer. J. Math. 79 (1957), 53-66. MR 0082730 (18,602a)
  • [MP12] Davesh Maulik and Bjorn Poonen, Néron-Severi groups under specialization, Duke Math. J. 161 (2012), no. 11, 2167-2206. MR 2957700,
  • [MN12] Mustaţa M. and Nicaise J., Weight functions on non-archimedean analytic spaces and the Kontsevich-Soibelman skeleton, available at arXiv:1212.6328.
  • [NX13] Nicaise J. and Xu C., The essential skeleton of a degeneration of algebraic varieties, available at arXiv:1307.4041.
  • [Nak04] Noboru Nakayama, Zariski-decomposition and abundance, MSJ Memoirs, vol. 14, Mathematical Society of Japan, Tokyo, 2004. MR 2104208 (2005h:14015)
  • [RT77] Jeffrey Rauch and B. A. Taylor, The Dirichlet problem for the multidimensional Monge-Ampère equation, Rocky Mountain J. Math. 7 (1977), no. 2, 345-364. MR 0454331 (56 #12582)
  • [Ser68] Jean-Pierre Serre, Corps locaux, Hermann, Paris, 1968 (French). Deuxième édition; Publications de l'Université de Nancago, No. VIII. MR 0354618 (50 #7096)
  • [Thu05] Thuillier A., Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d'Arakelov.. Ph.D. Thesis (2005), Université de Rennes I, available at
  • [Tia] Gang Tian, Canonical metrics in Kähler geometry, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2000. Notes taken by Meike Akveld. MR 1787650 (2001j:32024)
  • [Yau78] Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. MR 480350 (81d:53045),
  • [YZ13a] Yuan X. and Zhang S.-W., The arithmetic Hodge Theorem for adelic line bundles I, available at arXiv:1304.3538.
  • [YZ13b] Yuan X. and Zhang S.-W., The arithmetic Hodge Theorem for adelic line bundles II, available at arXiv:1304.3539.
  • [Zha95] Shouwu Zhang, Positive line bundles on arithmetic varieties, J. Amer. Math. Soc. 8 (1995), no. 1, 187-221. MR 1254133 (95c:14020),

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 32P05, 32U05

Retrieve articles in all journals with MSC (2010): 32P05, 32U05

Additional Information

Sébastien Boucksom
Affiliation: CNRS–Université Pierre et Marie Curie, Institut de Mathématiques, F-75251 Paris Cedex 05, France

Charles Favre
Affiliation: CNRS–CMLS, École Polytechnique, F-91128 Palaiseau Cedex, France

Mattias Jonsson
Affiliation: Dept of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043

Received by editor(s): December 30, 2011
Received by editor(s) in revised form: March 20, 2014
Published electronically: May 22, 2014
Additional Notes: The first author was partially supported by the ANR projects MACK and POSITIVE.
The second author was supported by the ANR-grant BERKO, and by the ERC-starting grant project “Nonarcomp” no.307856.
The third author was partially supported by the CNRS and the NSF
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society