Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

On the structure of almost Einstein manifolds


Authors: Gang Tian and Bing Wang
Journal: J. Amer. Math. Soc. 28 (2015), 1169-1209
MSC (2010): Primary 53Cxx; Secondary 35Jxx
DOI: https://doi.org/10.1090/jams/834
Published electronically: June 17, 2015
MathSciNet review: 3369910
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the structure of the limit space of a sequence of almost Einstein manifolds, which are generalizations of Einstein manifolds. Roughly speaking, such manifolds are the initial manifolds of some normalized Ricci flows whose scalar curvatures are almost constants over space-time in the $ L^1$-sense, and Ricci curvatures are bounded from below at the initial time. Under the non-collapsed condition, we show that the limit space of a sequence of almost Einstein manifolds has most properties which are known for the limit space of Einstein manifolds. As applications, we can apply our structure results to study the properties of Kähler manifolds.


References [Enhancements On Off] (What's this?)

  • [1] Michael T. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, J. Amer. Math. Soc. 2 (1989), no. 3, 455-490. MR 999661 (90g:53052), https://doi.org/10.2307/1990939
  • [2] Michael T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), no. 2, 429-445. MR 1074481 (92c:53024), https://doi.org/10.1007/BF01233434
  • [3] Shigetoshi Bando, Atsushi Kasue, and Hiraku Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), no. 2, 313-349. MR 1001844 (90c:53098), https://doi.org/10.1007/BF01389045
  • [4] E. Calabi, The space of Kähler metrics,, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, Vol. 2, Noordhoff, Groningen, 1954, pp. 206-207.
  • [5] Huai Dong Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds, Invent. Math. 81 (1985), no. 2, 359-372. MR 799272 (87d:58051), https://doi.org/10.1007/BF01389058
  • [6] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), no. 3, 406-480. MR 1484888 (98k:53044)
  • [7] Jeff Cheeger and Tobias H. Colding, On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom. 54 (2000), no. 1, 37-74. MR 1815411 (2003a:53044)
  • [8] J. Cheeger, T. H. Colding, and G. Tian, On the singularities of spaces with bounded Ricci curvature, Geom. Funct. Anal. 12 (2002), no. 5, 873-914. MR 1937830 (2003m:53053), https://doi.org/10.1007/PL00012649
  • [9] Jeff Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Problems in analysis (Papers dedicated to Salomon Bochner, 1969) Princeton Univ. Press, Princeton, N.J., 1970, pp. 195-199. MR 0402831 (53 #6645)
  • [10] J. Cheeger, Integral bounds on curvature elliptic estimates and rectifiability of singular sets, Geom. Funct. Anal. 13 (2003), no. 1, 20-72. MR 1978491 (2004i:53041), https://doi.org/10.1007/s000390300001
  • [11] Jeff Cheeger, Degeneration of Riemannian metrics under Ricci curvature bounds, Lezioni Fermiane. [Fermi Lectures], Scuola Normale Superiore, Pisa, 2001. MR 2006642 (2004j:53049)
  • [12] Jeff Cheeger and Aaron Naber, Lower bounds on Ricci curvature and quantitative behavior of singular sets, Invent. Math. 191 (2013), no. 2, 321-339. MR 3010378, https://doi.org/10.1007/s00222-012-0394-3
  • [13] Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), no. 1, 15-53. MR 658471 (84b:58109)
  • [14] Bennett Chow, Peng Lu, and Lei Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics, vol. 77, American Mathematical Society, Providence, RI; Science Press, New York, 2006. MR 2274812 (2008a:53068)
  • [15] Xiuxiong Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189-234. MR 1863016 (2003b:32031)
  • [16] Xiuxiong Chen, Claude Lebrun, and Brian Weber, On conformally Kähler, Einstein manifolds, J. Amer. Math. Soc. 21 (2008), no. 4, 1137-1168. MR 2425183 (2010h:53054), https://doi.org/10.1090/S0894-0347-08-00594-8
  • [17] S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333-354. MR 0385749 (52 #6608)
  • [18] Tobias H. Colding, Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996), no. 1-3, 193-214. MR 1369415 (96k:53068), https://doi.org/10.1007/s002220050050
  • [19] Tobias H. Colding, Ricci curvature and volume convergence, Ann. of Math. (2) 145 (1997), no. 3, 477-501. MR 1454700 (98d:53050), https://doi.org/10.2307/2951841
  • [20] Tobias Holck Colding and Aaron Naber, Sharp Hölder continuity of tangent cones for spaces with a lower Ricci curvature bound and applications, Ann. of Math. (2) 176 (2012), no. 2, 1173-1229. MR 2950772, https://doi.org/10.4007/annals.2012.176.2.10
  • [21] Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943 (2011c:35002)
  • [22] Mikhael Gromov, Structures métriques pour les variétés riemanniennes, Textes Mathématiques [Mathematical Texts], vol. 1, CEDIC, Paris, 1981 (French). Edited by J. Lafontaine and P. Pansu. MR 682063 (85e:53051)
  • [23] M. Gromov, Isoperimetric inequalities in Riemannian manifold, Asymptotic Theory of Finite Dimensional Normed Spaces, Textes Mathématiques [Mathematical Texts], vol. 1200, 1986.
  • [24] Leonard Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, Dirichlet forms (Varenna, 1992) Lecture Notes in Math., vol. 1563, Springer, Berlin, 1993, pp. 54-88. MR 1292277 (95h:47061), https://doi.org/10.1007/BFb0074091
  • [25] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer, Berlin, 1998.
  • [26] Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306. MR 664497 (84a:53050)
  • [27] Richard S. Hamilton, The formation of singularities in the Ricci flow, Surveys in differential geometry, Vol. II (Cambridge, MA, 1993) Int. Press, Cambridge, MA, 1995, pp. 7-136. MR 1375255 (97e:53075)
  • [28] P. Li, Lecture Notes on Geometric Analysis. available at http://math.uci.edu/ pli/lecture.pdf.
  • [29] Toshiki Mabuchi, $ K$-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575-593. MR 867064 (88b:53060), https://doi.org/10.2748/tmj/1178228410
  • [30] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, available at arXiv:math.DG/0211159.
  • [31] P. Petersen and G. Wei, Relative volume comparison with integral curvature bounds, Geom. Funct. Anal. 7 (1997), no. 6, 1031-1045. MR 1487753 (99c:53023), https://doi.org/10.1007/s000390050036
  • [32] Peter Petersen and Guofang Wei, Analysis and geometry on manifolds with integral Ricci curvature bounds. II, Trans. Amer. Math. Soc. 353 (2001), no. 2, 457-478. MR 1709777 (2002c:53055), https://doi.org/10.1090/S0002-9947-00-02621-0
  • [33] O. S. Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981), no. 1, 110-120. MR 620582 (83f:58080b), https://doi.org/10.1016/0022-1236(81)90050-1
  • [34] Wan-Xiong Shi, Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geom. 30 (1989), no. 2, 303-394. MR 1010165 (90f:53080)
  • [35] Gábor Székelyhidi, Greatest lower bounds on the Ricci curvature of Fano manifolds, Compos. Math. 147 (2011), no. 1, 319-331. MR 2771134 (2011m:32037), https://doi.org/10.1112/S0010437X10004938
  • [36] Gang Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $ C_1(M)>0$, Invent. Math. 89 (1987), no. 2, 225-246. MR 894378 (88e:53069), https://doi.org/10.1007/BF01389077
  • [37] G. Tian, On Calabi's conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), no. 1, 101-172. MR 1055713 (91d:32042), https://doi.org/10.1007/BF01231499
  • [38] Gang Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), no. 1, 1-37. MR 1471884 (99e:53065), https://doi.org/10.1007/s002220050176
  • [39] G. Tian and Bing Wang, On the Chern number inequality of minimal varieties. preprint.
  • [40] Gang Tian and Zhou Zhang, On the Kähler-Ricci flow on projective manifolds of general type, Chinese Ann. Math. Ser. B 27 (2006), no. 2, 179-192. MR 2243679 (2007c:32029), https://doi.org/10.1007/s11401-005-0533-x
  • [41] Hajime Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Ann. 281 (1988), no. 1, 123-133. MR 944606 (89e:53075), https://doi.org/10.1007/BF01449219
  • [42] Bing Wang, On the conditions to extend Ricci flow, Int. Math. Res. Not. IMRN 8 (2008), Art. ID rnn012, 30. MR 2428146 (2009k:53176), https://doi.org/10.1093/imrn/rnn012
  • [43] Bing Wang, On the conditions to extend Ricci flow(II), Int. Math. Res. Not. IMRN 14 (2012), 3192-3223. MR 2946223, https://doi.org/10.1093/imrn/rnr141
  • [44] Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. MR 480350 (81d:53045), https://doi.org/10.1002/cpa.3160310304

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 53Cxx, 35Jxx

Retrieve articles in all journals with MSC (2010): 53Cxx, 35Jxx


Additional Information

Gang Tian
Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544; Beijing International Center for Mathematical Research, School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
Email: tian@math.princeton.edu

Bing Wang
Affiliation: Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706
Email: bwang@math.wisc.edu

DOI: https://doi.org/10.1090/jams/834
Received by editor(s): February 24, 2013
Received by editor(s) in revised form: September 29, 2014
Published electronically: June 17, 2015
Additional Notes: The first author was partially supported by NSF Grants DMS-0804095, DMS-1309359 and an NSFC Grant
The second author was partially supported by NSF Grant DMS-1006518 and funds from SCGP
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society