Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

Exact Lagrangian immersions with a single double point


Authors: Tobias Ekholm and Ivan Smith
Journal: J. Amer. Math. Soc. 29 (2016), 1-59
MSC (2010): Primary 53D35, 53D40, 14J70; Secondary 14N05
DOI: https://doi.org/10.1090/S0894-0347-2015-00825-6
Published electronically: January 9, 2015
MathSciNet review: 3402693
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if a closed orientable $ 2k$-manifold $ K$, $ k>2$, with Euler characteristic $ \chi (K)\ne -2$ admits an exact Lagrangian immersion into $ \mathbb{C}^{2k}$ with one transverse double point and no other self-intersections, then $ K$ is diffeomorphic to the sphere. The proof combines Floer homological arguments with a detailed study of moduli spaces of holomorphic disks with boundary in a monotone Lagrangian submanifold obtained by Lagrange surgery on $ K$.


References [Enhancements On Off] (What's this?)

  • [1] Mohammed Abouzaid, Framed bordism and Lagrangian embeddings of exotic spheres, Ann. of Math. (2) 175 (2012), no. 1, 71-185. MR 2874640, https://doi.org/10.4007/annals.2012.175.1.4
  • [2] V. I. Arnold, The first steps of symplectic topology, Uspekhi Mat. Nauk 41 (1986), no. 6(252), 3-18, 229 (Russian). MR 890489 (89d:58034)
  • [3] M. F. Atiyah and F. Hirzebruch, Bott periodicity and the parallelizability of the spheres, Proc. Cambridge Philos. Soc. 57 (1961), 223-226. MR 0126282 (23 #A3578)
  • [4] Frédéric Bourgeois, Tobias Ekholm, and Yasha Eliashberg, Effect of Legendrian surgery, Geom. Topol. 16 (2012), no. 1, 301-389. With an appendix by Sheel Ganatra and Maksim Maydanskiy. MR 2916289, https://doi.org/10.2140/gt.2012.16.301
  • [5] Jean Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudo-isotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5-173 (French). MR 0292089 (45 #1176)
  • [6] Mihai Damian, Floer homology on the universal cover, Audin's conjecture and other constraints on Lagrangian submanifolds, Comment. Math. Helv. 87 (2012), no. 2, 433-462. MR 2914855, https://doi.org/10.4171/CMH/259
  • [7] S. K. Donaldson, Connections, cohomology and the intersection forms of $ 4$-manifolds, J. Differential Geom. 24 (1986), no. 3, 275-341. MR 868974 (88g:57033)
  • [8] Yakov Eliashberg and Emmy Murphy, Lagrangian caps, Geom. Funct. Anal. 23 (2013), no. 5, 1483-1514. MR 3102911, https://doi.org/10.1007/s00039-013-0239-2
  • [9] Tobias Ekholm, Yakov Eliashberg, Emmy Murphy, and Ivan Smith, Constructing exact Lagrangian immersions with few double points, Geom. Funct. Anal. 23 (2013), no. 6, 1772-1803. MR 3132903, https://doi.org/10.1007/s00039-013-0243-6
  • [10] Tobias Ekholm, Double points of exact Lagrangian immersions and Legendrian contact homology, Floer homology, gauge theory, and low-dimensional topology, Clay Math. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 2006, pp. 181-191. MR 2249253 (2007d:53145)
  • [11] Tobias Ekholm, Morse flow trees and Legendrian contact homology in 1-jet spaces, Geom. Topol. 11 (2007), 1083-1224. MR 2326943 (2008i:53128), https://doi.org/10.2140/gt.2007.11.1083
  • [12] Tobias Ekholm, John B. Etnyre, and Joshua M. Sabloff, A duality exact sequence for Legendrian contact homology, Duke Math. J. 150 (2009), no. 1, 1-75. MR 2560107 (2011b:53214), https://doi.org/10.1215/00127094-2009-046
  • [13] Tobias Ekholm, John Etnyre, and Michael Sullivan, The contact homology of Legendrian submanifolds in $ {\mathbb{R}}^{2n+1}$, J. Differential Geom. 71 (2005), no. 2, 177-305. MR 2197142 (2007f:53115)
  • [14] Tobias Ekholm, John Etnyre, and Michael Sullivan, Non-isotopic Legendrian submanifolds in $ \mathbb{R}^{2n+1}$, J. Differential Geom. 71 (2005), no. 1, 85-128. MR 2191769 (2006i:53119)
  • [15] Tobias Ekholm, John Etnyre, and Michael Sullivan, Legendrian contact homology in $ P\times \mathbb{R}$, Trans. Amer. Math. Soc. 359 (2007), no. 7, 3301-3335 (electronic). MR 2299457 (2008k:53194), https://doi.org/10.1090/S0002-9947-07-04337-1
  • [16] Tobias Ekholm, John Etnyre, and Michael Sullivan, Orientations in Legendrian contact homology and exact Lagrangian immersions, Internat. J. Math. 16 (2005), no. 5, 453-532. MR 2141318 (2006d:53113), https://doi.org/10.1142/S0129167X05002941
  • [17] Tobias Ekholm and Ivan Smith, Exact Lagrangian immersions with one double point revisited, Math. Ann. 358 (2014), no. 1-2, 195-240. MR 3157996, https://doi.org/10.1007/s00208-013-0958-6
  • [18] Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513-547. MR 965228 (90f:58058)
  • [19] A. Floer, Monopoles on asymptotically flat manifolds, The Floer memorial volume, Progr. Math., vol. 133, Birkhäuser, Basel, 1995, pp. 3-41. MR 1362821 (96j:58024)
  • [20] Michael Frame, On the inertia groups of fibre bundles, Proc. Amer. Math. Soc. 85 (1982), no. 2, 289-292. MR 652460 (83m:57023), https://doi.org/10.2307/2044299
  • [21] K. Fukaya, Y.-G. Oh, K. Ohta, and K. Ono, Lagrangian intersection Floer theory--Anomaly and obstruction, I & II., AMS Studies in Advanced Mathematics, vol. 46, International Press, Boston, 2009.
  • [22] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), no. 2, 307-347. MR 809718 (87j:53053), https://doi.org/10.1007/BF01388806
  • [23] Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505 (90a:58201)
  • [24] Helmut Hofer, Krzysztof Wysocki, and Eduard Zehnder, A general Fredholm theory. II. Implicit function theorems, Geom. Funct. Anal. 19 (2009), no. 1, 206-293. MR 2507223 (2010g:53174), https://doi.org/10.1007/s00039-009-0715-x
  • [25] J. F. P. Hudson, Concordance, isotopy, and diffeotopy, Ann. of Math. (2) 91 (1970), 425-448. MR 0259920 (41 #4549)
  • [26] J. F. P. Hudson and E. C. Zeeman, On combinatorial isotopy, Inst. Hautes Études Sci. Publ. Math. 19 (1964), 69-94. MR 0163318 (29 #621)
  • [27] Michel A. Kervaire, A note on obstructions and characteristic classes, Amer. J. Math. 81 (1959), 773-784. MR 0107863 (21 #6585)
  • [28] Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504-537. MR 0148075 (26 #5584)
  • [29] Thomas Kragh, Parametrized ring-spectra and the nearby Lagrangian conjecture, Geom. Topol. 17 (2013), no. 2, 639-731. With an appendix by Mohammed Abouzaid. MR 3070514, https://doi.org/10.2140/gt.2013.17.639
  • [30] Daesung Kwon and Yong-Geun Oh, Structure of the image of (pseudo)-holomorphic discs with totally real boundary condition, Comm. Anal. Geom. 8 (2000), no. 1, 31-82. Appendix 1 by Jean-Pierre Rosay. MR 1730896 (2001b:32050)
  • [31] L. Lazzarini, Existence of a somewhere injective pseudo-holomorphic disc, Geom. Funct. Anal. 10 (2000), no. 4, 829-862. MR 1791142 (2003a:32044), https://doi.org/10.1007/PL00001640
  • [32] Y.-P. Lee, Quantum $ K$-theory. I. Foundations, Duke Math. J. 121 (2004), no. 3, 389-424. MR 2040281 (2005f:14107), https://doi.org/10.1215/S0012-7094-04-12131-1
  • [33] Dusa McDuff, Examples of symplectic structures, Invent. Math. 89 (1987), no. 1, 13-36. MR 892186 (88m:58061), https://doi.org/10.1007/BF01404672
  • [34] Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR 1698616 (2000g:53098)
  • [35] Yong-Geun Oh, Gromov-Floer theory and disjunction energy of compact Lagrangian embeddings, Math. Res. Lett. 4 (1997), no. 6, 895-905. MR 1492128 (98k:58048), https://doi.org/10.4310/MRL.1997.v4.n6.a9
  • [36] Yong-Geun Oh, Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks. I, Comm. Pure Appl. Math. 46 (1993), no. 7, 949-993. MR 1223659 (95d:58029a), https://doi.org/10.1002/cpa.3160460702
  • [37] Yong-Geun Oh, Fredholm theory of holomorphic discs under the perturbation of boundary conditions, Math. Z. 222 (1996), no. 3, 505-520. MR 1400206 (97g:58024), https://doi.org/10.1007/PL00004544
  • [38] A. V. Pazhitnov, On the sharpness of inequalities of Novikov type for manifolds with a free abelian fundamental group, Mat. Sb. 180 (1989), no. 11, 1486-1523, 1584 (Russian); English transl., Math. USSR-Sb. 68 (1991), no. 2, 351-389. MR 1034426 (91c:57040)
  • [39] L. Polterovich, The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991), no. 2, 198-210. MR 1097259 (93d:57062), https://doi.org/10.1007/BF01896378
  • [40] Reinhard E. Schultz, Smooth structures on $ S^{p}\times S^{q}$, Ann. of Math. (2) 90 (1969), 187-198. MR 0250321 (40 #3560)
  • [41] Reinhard Schultz, On the inertia group of a product of spheres, Trans. Amer. Math. Soc. 156 (1971), 137-153. MR 0275453 (43 #1209)
  • [42] Paul Seidel, Graded Lagrangian submanifolds, Bull. Soc. Math. France 128 (2000), no. 1, 103-149 (English, with English and French summaries). MR 1765826 (2001c:53114)
  • [43] Stephen Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327-344. MR 0105117 (21 #3862)
  • [44] Stephen Smale, Generalized Poincaré's conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391-406. MR 0137124 (25 #580)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 53D35, 53D40, 14J70, 14N05

Retrieve articles in all journals with MSC (2010): 53D35, 53D40, 14J70, 14N05


Additional Information

Tobias Ekholm
Affiliation: Department of Mathematics, Uppsala University, Box 480, Uppsala 751 06, Sweden; and Institut Mittag-Leffler, Aurav. 17, Djursholm 182 60, Sweden
Email: tobias.ekholm@math.uu.se

Ivan Smith
Affiliation: Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom
Email: is200@cam.ac.uk

DOI: https://doi.org/10.1090/S0894-0347-2015-00825-6
Received by editor(s): November 25, 2011
Received by editor(s) in revised form: July 11, 2014, and September 6, 2014
Published electronically: January 9, 2015
Additional Notes: The first author was partially supported by the Knut and Alice Wallenberg Foundation, as a Wallenberg Scholar.
The second author was partially supported by European Research Council grant ERC-2007-StG-205349.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society