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PIN(2)-EQUIVARIANT SEIBERG-WITTEN FLOER HOMOLOGY

AND THE TRIANGULATION CONJECTURE

CIPRIAN MANOLESCU

1. Introduction

The existence of topological manifolds that do not admit combinatorial triangu-
lations (that is, piecewise linear structures) has been known in dimension ≥ 5 since
the celebrated work of Kirby and Siebenmann [30]. Freedman [17] constructed such
examples in dimension four. In dimensions ≤ 3, every topological manifold has a
unique piecewise-linear structure, by the older work of Radó [50] and Moise [40].

A related question is whether topological manifolds admit simplicial triangula-
tions. A simplicial triangulation is a homeomorphism to a locally finite simplicial
complex; this complex does not have to be a piecewise linear manifold. A typical
example of a simplicial triangulation that is not combinatorial can be obtained as
follows: Take a non-trivial homology sphere M (such as the Poincaré sphere), and
form its double suspension Σ2M . By the double suspension theorem of Edwards
[10, 11] and Cannon [6], Σ2M is homeomorphic to a sphere. An arbitrary triangu-
lation of M induces one of Σ2M that is not combinatorial, because the links of the
cone points are not spheres.

The Triangulation Conjecture (in dimension n) states that every n-dimensional
topological manifold has a simplicial triangulation. The conjecture is true for n ≤ 3,
but false in dimension four: Using the properties of the Casson invariant [1], it can
be shown that the Freedman E8-manifold cannot be triangulated.

In dimensions ≥ 5, Galewski and Stern [26] and Matumoto [39] reduced the
Triangulation Conjecture to a problem in low-dimensional topology: They showed
that the conjecture is true if and only if there exists a homology 3-sphere Y such
that Y has Rokhlin invariant one, and Y is of order two in the homology cobordism
group θH3 .

Let us recall the relevant definitions: The group θH3 is generated by equivalence
classes of integral homology 3-spheres, where Y0 is equivalent to Y1 if there exists
a piecewise-linear (or, equivalently, a smooth) compact, oriented four-dimensional
cobordism W from Y0 to Y1, such that H∗(W,Y0;Z) = H∗(W,Y1;Z) = 0. Addition
in θH3 is given by connected sum. It is known that θH3 is infinite, and in fact
infinitely generated [13, 14, 23]. There is a distinguished map μ : θH3 → Z/2,
called the Rokhlin homomorphism [12, 51]. More generally, one can associate a
Rokhlin invariant μ(Y, s) ∈ 1

8Z (mod 2Z) to any 3-manifold Y equipped with a
spin structure s. One takes an arbitrary compact, smooth, spin four-manifold
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(W, t) with boundary (Y, s) and sets

μ(Y, s) =
σ(W )

8
(mod 2Z),

where σ(W ) denotes the signature of W . When Y is an integral homology sphere,
there is a unique spin structure s on Y , and σ(W ) is divisible by 8; the Rokhlin
homomorphism is defined by μ(Y ) = μ(Y, s).

The main result of this paper is Theorem 1.1.

Theorem 1.1. To every rational homology 3-sphere Y equipped with a spin struc-
ture s we can associate an invariant β(Y, s) ∈ 1

8Z, with the following properties:

(1) If −Y denotes Y with the orientation reversed, then β(−Y, s) = −β(Y, s);
(2) The mod2 reduction of −β(Y, s) is the generalized Rokhlin invariant μ(Y, s);
(3) Suppose that W is a smooth, oriented, negative-definite cobordism from Y0

to Y1, and let b2(W ) denote the second Betti number of W . If W admits a
spin structure t, then

β(Y1, t|Y1
) ≥ β(Y0, t|Y0

) +
1

8
b2(W ).

When Y is an integral homology sphere, we simply write β(Y ) = β(Y, s) ∈
Z for the unique spin structure s. We then have β(Y ) ≡ μ(Y ) (mod 2). The
third property of β mentioned in Theorem 1.1 shows that β is an invariant of
homology cobordism. Together with the other two properties, this implies the
following corollary.

Corollary 1.2. If Y is a homology sphere of Rokhlin invariant one, then Y#Y is
not homology cobordant to S3.

In view of the work of Galewski-Stern and Matumoto [26,39], this disproves the
Triangulation Conjecture in high dimensions.

Corollary 1.3. For every n ≥ 5, there exists a closed n-dimensional topological
manifold that does not admit a simplicial triangulation.

Indeed, Galewski and Stern proved in [25, Theorem 2.1] that (assuming the
truth of Corollary 1.2) an obstruction to the existence of simplicial triangulations
on manifolds M of dimension ≥ 5 is the non-vanishing of Sq1 Δ(M) ∈ H5(M ;Z/2),
where Δ(M) ∈ H4(M ;Z/2) is the Kirby-Siebenmann obstruction to combinato-
rial triangulations, and Sq1 denotes the first Steenrod square. It follows from
the work of Galewski-Stern, Matumoto, and the earlier work of Siebenmann [57]
that all orientable 5-manifolds are triangulable. A specific non-orientable five-
dimensional manifold M5 with Sq1 Δ(M) �= 0 is constructed in [25]. Hence M5

is non-triangulable. To get non-orientable examples of non-triangulable manifolds
in dimensions n > 5 we can take the product of M5 with the torus Tn−5. To get
an orientable example in dimension 6 we can consider the non-orientable S1-bundle
over M given by M̃ ×Z/2 S

1, where M̃ → M is the oriented double cover; the total
space of this bundle is orientable. To get orientable examples in dimensions n > 6,
we can then take products with Tn−6.

Let us discuss the origin of the invariant β from Theorem 1.1. There are two
important antecedents. The first is Casson’s invariant of integral homology spheres
[1]. Casson’s invariant λ satisfies the analogues of properties (1) and (2) in Theo-
rem 1.1 (anti-symmetry under orientation reversal, and being a lift of the Rokhlin
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invariant), but is not an invariant of homology cobordism. Nevertheless, this suf-
ficed to make some progress in the direction of Corollary 1.2: A particular class of
homology spheres Y such that Y#Y is homology cobordant to S3 is given by those
Y that admit an orientation reversing homeomorphism; using λ, one can show that
homology spheres of this kind have Rokhlin invariant zero.

The second antecedent of β consists of the “correction terms” in Floer homol-
ogy inspired by the work of Frøyshov [18]. Correction terms were defined first by
Frøyshov in instanton (Yang-Mills) Floer homology [19], then by Ozsváth-Szabó
in Heegaard Floer homology [44], and by Frøyshov and Kronheimer-Mrowka in
monopole (Seiberg-Witten) Floer homology [20,32,33]. In all these cases, one stud-
ies a version of Floer homology for Y and captures a numerical invariant from its
grading.

For example, if Y is a homology 3-sphere, its monopole Floer homology }HM (Y )
(as defined in [32]) is a graded module over the polynomial ring Z[U ], with U

lowering degree by 2. The module }HM (Y ) consists of some Z[U ]-torsion part and
a single “infinite tail” of the form

Z 0 Z

U
��

0 Z

U
��

0 . . .

U

��

where the U -action is indicated by arrows. The Frøyshov invariant h(Y) is defined
as minus one-half of the minimal grading of an element in this tail.

The correction terms mentioned above all satisfy analogues of the properties (1)
and (3) in Theorem 1.1 (anti-symmetry under orientation reversal, and a strong
form of monotonicity under negative-definite cobordisms). However, none of them
reduces to the Rokhlin invariant mod 2.

The invariant β combines the good properties of the Casson and Frøyshov–type
invariants. It is defined as a correction term in a new, Pin(2)-equivariant version
of Seiberg-Witten Floer homology. This version uses an extra symmetry of the
Seiberg-Witten equations that appears in the presence of a spin structure. The
same symmetry was previously used with success in four dimensions, most notably
in Furuta’s proof of the 10/8-Theorem [24].

In three dimensions, we use the extra symmetry to define Pin(2)-equivariant
Seiberg-Witten Floer homology with coefficients in the field F2 of two elements.
Given a rational homology sphere Y with a spin structure s, its Pin(2)-equivariant
Seiberg-Witten Floer homology is a graded module over the ring F2[q, v]/(q

3), with
q and v lowering degrees by 1 and 4, respectively. This Floer homology has an
infinite tail of the form

. . . F2 F2

q

��

F2

q

��

0 F2

v

�� F2

q

��

v

�� F2

q

��

v

�� 0 . . .

v

�� . . .

v

�� . . .

v

��

If we forget the action of q, the tail consists of three direct summands supported in
three different degrees mod 4. One defines three invariants α(Y, s), β(Y, s), γ(Y, s)
in terms of the minimal possible gradings of elements in each of the three summands.
The middle invariant β is the one used in Theorem 1.1. The invariants α and γ
satisfy the exact analogues of properties (2) and (3) in Theorem 1.1, but they are
less useful than β because they get switched under orientation reversal:

α(−Y, s) = −γ(Y, s), γ(−Y, s) = −α(Y, s).
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A key fact to be noted is that the tail in Pin(2)-equivariant Seiberg-Witten Floer
homology is periodic only mod 4 (not mod 2). This allows us to get a hold on the
mod 2 reductions of α, β, and γ: The reductions all end up being equal to the
Rokhlin invariant.

The construction of Pin(2)-equivariant Seiberg-Witten Floer homology in this
paper uses the techniques previously employed by the author in [36]. It involves do-
ing finite-dimensional approximations of the Seiberg-Witten equations, using Con-
ley index theory to construct a Pin(2)-equivariant space, and then taking the ho-
mology of this space. In [36], this was done in an S1-equivariant context. Adapting
the construction to the Pin(2)-equivariant setting presents no major difficulties.

We mention that we chose the methods in [36] because (for rational homology
3-spheres) they seemed easiest from a technical point of view. However, we expect
that Pin(2)-equivariant Seiberg-Witten Floer homology can also be defined in the
spirit of the work of Kronheimer and Mrowka [32]. Furthermore, there should be a
Pin(2)-version of Heegaard Floer homology, where the role of the extra symmetry
is played by the interchange of the alpha and beta curves. The advantage of using
these theories (rather than the Conley index method) is that they should make it
possible to define Pin(2)-Floer homology for all spin 3-manifolds, and to make it
more computable.

2. Spaces of Type Seiberg-Witten Floer (SWF)

In this section we discuss some facts regarding the algebraic topology of spaces
with a Pin(2)-action. We show that under certain conditions, one can extract from
their Borel homology groups three quantities a, b, c ∈ Z. Later, in Section 3, we
will use this information in the context of Floer theory to obtain the three new
invariants of homology cobordism.

2.1. Pin(2)-equivariant topology. Let H = C ⊕ Cj = {x + yi + zj + wk |
x, y, z, w ∈ R} be the space of quaternions. Inside the group of unit quaternions
S(H) = SU(2) we have the circle group S1 = C ∩ S(H), and also the subgroup

G := Pin(2) = S1 ∪ S1j.

There is a short exact sequence

(1) 1 −→ S1 −→ G −→ Z/2 −→ 1.

Furthermore, the inclusion G ⊂ SU(2) can be viewed as part of a fibration

(2) G −→ SU(2) −→ RP2,

where the second map is the composition of the Hopf fibration with the involution
on S2.

Among the real irreducible representations of G, we mention the following three:

• the trivial representation R;
• the one-dimensional sign representation R̃ on which S1 ⊂ G acts trivially
and j acts by multiplication by −1;

• the quaternions H, acted on by G via left multiplication.

We want to study the topology of spaces with a G-action. Let us start by
understanding the classifying space BG = EG/G. The short exact sequence (1)
shows that BG is the quotient of BS1 = CP∞ under the involution

[z1 : w1 : z2 : w2 : · · · ] → [−w̄1 : z̄1 : −w̄2 : z̄2 : · · · ].
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An alternate (and more useful) description of BG comes from (2), which gives
a fibration

(3) RP2 −→ BG −→ B SU(2) = HP∞.

We are interested in the cohomology of BG with coefficients in the field F2 =
Z/2. The Leray-Serre spectral sequence associated to (3) has no room for higher
differentials, so the cohomology groups of BG are

F2 F2 F2 0 F2 F2 F2 0 · · ·
in degrees 0, 1, 2, . . . . Moreover, the multiplicative properties of the spectral se-
quence show that, as a ring,

(4) R := H∗(BG;F2) ∼= F2[q, v]/(q
3),

with elements q in degree 1 and v in degree 4.
Let X be a pointed, finite G-CW complex. Consider its (reduced) Borel homol-

ogy and cohomology

H̃G
∗ (X;F2) = H̃∗(EG+ ∧G X;F2),

H̃∗
G(X;F2) = H̃∗(EG+ ∧G X;F2),

where EG+ denotes the union of EG with a disjoint base point.

Both Borel homology and Borel cohomology are modules over H̃∗
G(S

0;F2) =
H∗(BG;F2) = R. Note that since we work with coefficients over a field, the
Borel homology and Borel cohomology of X (in any given grading) are dual vector
spaces, and their R-module structures are also related to each other by duality. For
example, the description (4) of H̃∗

G(S
0;F2) implies that the Borel homology of S0

is

F2 F2

q

��

F2

q

��

0 F2

v

�� F2

q

��

v

�� F2

q

��

v

�� 0 . . .

v

�� . . .

v

�� . . .

v

��

in degrees 0, 1, 2, . . . , with the module structure indicated through the arrows.
One property of Borel cohomology that we need is a version of the localization

theorem; see [9, III (3.8)] for a proof.

Proposition 2.1. Suppose A ⊆ X is a G-subcomplex such that the action of G
on X − A is free. Then the inclusion of A into X induces an isomorphism on
equivariant cohomology after inverting the element v ∈ H∗(BG;F2); that is, we
have an isomorphism of F2[q, v, v

−1]/(q3)-modules,

(5) v−1H̃∗
G(A;F2) ∼= v−1H̃∗

G(X;F2).

Another important property of Borel cohomology (with F2 coefficients) is its
invariance under suspensions, up to a shift in degree. Precisely, if V is a finite-
dimensional representation of G, let us denote by V + the one-point compactification
of V , and by ΣV X = V + ∧X the suspension of X by this representation. We have
Proposition 2.2.

Proposition 2.2. For any finite-dimensional representation V of G, we have an
isomorphism of R-modules,

(6) H̃∗
G(Σ

V X;F2) ∼= H̃∗−dimV
G (X;F2).

A similar isomorphism holds for Borel homology.
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Proof. There is a V -bundle,

p : EG×G (V ×X) → EG×G X.

Applying the relative Thom isomorphism theorem (with F2 coefficients) to this
bundle over the pair (EG×G X,EG× pt), we obtain (6). �

Remark 2.3. Borel homology and Borel cohomology with Z coefficients are not
invariant under arbitrary suspensions. The analogue of the isomorphism (6) with Z

coefficients holds if V is a trivial representation, and also (using the relative Thom
isomorphism theorem) if V is a complex representation of G such as H. However,

it does not hold for non-trivial real representations such as R̃.

2.2. Equivariant duality. The problem mentioned in Remark 2.3 can be fixed
(with Z coefficients) by using the RO(G)-graded homology theory of Lewis, May,
and McClure [34, 35]. This theory is invariant under suspension by any represen-
tation, up to a corresponding shift in the RO(G)-grading. In this paper we will
only make use of the RO(G)-graded theory indirectly: With coefficients in F2, we
can collapse its grading to Z via the natural map RO(G) → Z, V �→ dimV , and
the result is the usual Borel homology. It follows that Borel homology (with F2

coefficients) satisfies the various properties established in the literature for RO(G)-
graded homology.

In particular, we are interested in the behavior of Borel homology under equi-
variant Spanier-Whitehead duality. This was studied in [28,35,60,61] in the context
of RO(G)-graded homology. We gather below a few facts taken from these sources.
We simplify the exposition so as to be in terms of Borel homology with F2 coeffi-
cients, and also in terms of spaces rather than spectra.

Recall that in non-equivariant algebraic topology, two pointed, connected spaces
X and X ′ are said to be Spanier-Whitehead m-dual if there is a map ε : X ∧X ′ →
Sm such that the slant product with the fundamental class of Sm induces an iso-
morphism H∗(X) → Hm−∗(X) in all degrees [58, 59]. The equivariant analogue of
this is V -duality, with respect to a representation V of G. The original definition,
as given in [35, Definition 3.4], involves an isomorphism on the equivariant stable
homotopy of the infinite suspensions of X and X ′. In the case of finite G-CW com-
plexes, according to [35, Theorem 3.6], there is an equivalent and more elementary
definition.

Definition 2.4. Let V be a finite-dimensional representation of G. Two pointed,
finite G-CW complexes X and X ′ are called (equivariantly) V -dual if there exists
a G-map ε : X ∧X ′ → V + such that for any subgroup H ⊆ G, the fixed point set
map εH : XH ∧ (X ′)H → (V H)+ induces a non-equivariant duality between XH

and (X ′)H .

The examples of V -dual spaces that we need in this paper come from the follow-
ing lemma.

Lemma 2.5. Suppose N is a smooth G-manifold with boundary embedded in a
representation V of G, such that dimN = dimV = m. Further, suppose that
∂N admits a decomposition ∂N = L ∪ L′ with L and L′ being smooth (m − 1)-
dimensional G-manifolds such that L ∩ L′ = ∂L = ∂L′. Then N/L and N/L′ are
equivariantly V -dual.
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Proof. The non-equivariant analogue of this lemma is well-known; see, for example,
[2] or [8, Lemma 3.6]. The equivariant version is a direct consequence of [35,
Theorem 4.1], which states that (under certain technical assumptions, automatically
satisfied for embeddings of smooth G-manifolds), if we have inclusions of G-spaces
A ⊂ X ⊂ V as the neighborhood retracts, then X/A and (V − A)/(V − X) are
dual with respect to V . For the case at hand, take (X,A) = (N,L) and observe
that (V − L)/(V −N) is G-equivalent to N/L′. �

If X and X ′ are V -dual, the Borel homology of X is related to the Borel coho-
mology of X ′ as follows. Let m = dimV . First, the Borel cohomology of X ′ can
be viewed as an equivariant generalized homology of X, called co-Borel homology
and denoted by cHG

∗ ,

(7) cH̃G
∗ (X;F2) ∼= H̃m−∗

G (X ′;F2) = H̃m−∗(EG+ ∧G X ′;F2).

Second, the Borel and co-Borel homologies fit into a long exact sequence, whose
third term is another equivariant generalized homology tHG

∗ , called Tate homology,

(8) · · · −→ cH̃G
∗ (X;F2) −→ tH̃G

∗ (X;F2) −→ H̃G
∗−2(X;F2) −→ · · · .

Tate homology was defined by Greenlees and May [28] as the co-Borel homology

of ẼG ∧ X, where ẼG is the unreduced suspension of EG (with one of the cone
points as base point). We will need the following facts:

• Being an (equivariant) generalized homology theory, Tate homology satis-
fies the usual Eilenberg-Steenrod axioms: homotopy, excision, and exact-
ness.

• Tate homology with coefficients in F2 is invariant under suspensions by
arbitrary representations of G:

(9) tH̃G
∗ (ΣV X;F2) ∼= tH̃G

∗−dimV (X;F2).

This holds because Tate homology is a particular case of co-Borel homology.
• If X has a free G-action away from the base point, then

(10) tH̃G
∗ (X;F2) = 0.

This is proved in [28, Proposition 2.4].
• Tate homology is 4-periodic, that is,

(11) tH̃G
∗ (X;F2) ∼= tH̃G

∗−4(X;F2).

Indeed, the right hand side is the Tate homology of ΣHX by (9). On the
other hand, ΣHX contains X as a subset whose complement has a free
G-action, so (10) and exactness imply that tH̃G

∗ (ΣHX;F2) ∼= tH̃G
∗ (X;F2).

• For X = S0 we have a graded isomorphism:

(12) tH̃G
∗−2(S

0;F2) ∼= v−1R ∼= F2[q, v, v
−1]/(q3).

Indeed, the Tate cohomology tH̃∗
G(S

0;F2) is isomorphic (as a graded vector
space) to F2[q, v, v

−1]/(q3), according to the computation in [28, Corollary

9.10]. Further, we have tH̃∗
G(S

0;F2) ∼= tH̃G
−∗(S

0;F2) by [28, p. 58]. Of
course, given the structure of F2[q, v, v

−1]/(q3), reversing its grading is the
same as shifting it by 2. From here we get (12) as an isomorphism of
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graded vector spaces. The fact that (12) is also an isomorphism of R-
modules follows from the fact that the exact sequence (8) (applied to S0)
is one of modules, together with the 4-periodicity of Tate homology as a
module.

These properties make Tate homology computable in many cases. Combining
(7) with (8) and with the knowledge of tH̃∗, one can get information about the
Borel homology of X in terms of the Borel cohomology of X ′.

Remark 2.6. The discussion above should be compared with its analogue in the
S1-equivariant case, which appeared in [31, Section 5.2] in connection with S1-
equivariant Seiberg-Witten Floer homology. The readers familiar with Heegaard
Floer homology should think of the Borel, co-Borel, and Tate homologies as similar
to HF+,HF−, and HF∞; compare [31, Conjecture 1].

2.3. Spaces of type SWF. The definition below is motivated by the construction
of the Seiberg-Witten Floer spectrum in Section 3. We let G = Pin(2) as before.

Definition 2.7. Let s ≥ 0. A space of type SWF (at level s) is a pointed, finite
G-CW complex X with the following properties:

(a) The S1-fixed point set XS1

is G-homotopy equivalent to the sphere (R̃s)+;

(b) The action of G is free on the complement X −XS1

.

Given a space X of type SWF at level s, we can apply Proposition 2.1 to the

subcomplex A = XS1

and obtain

(13) v−1H̃∗
G(X;F2) ∼= v−1H̃∗

G((R̃
s)+;F2) ∼= (v−1R)[s],

where the last isomorphism follows from (4) and the suspension invariance of Borel
cohomology (Proposition 2.2). The notation [s] indicates a grading shift by s, so
that the element 1 ∈ F2[q, v, v

−1]/(q3) ∼= v−1R is moved to degree s.

Equation (13) implies that there are nonzero elements in H̃∗
G(X;F2) in some

degrees congruent to s, s + 1, and s + 2 (mod 4), such that these elements do not
get killed by inverting v; that is, for any l ≥ 0, multiplying them by vl does not
give zero.

Thus, to the space X we can associate the following three quantities:

a(X) = min{r ≡ s (mod 4) | ∃ x ∈ H̃r
G(X;F2), vlx �= 0 for all l ≥ 0},

b(X) = min{r ≡ s+ 1 (mod 4) | ∃ x ∈ H̃r
G(X;F2), vlx �= 0 for all l ≥ 0} − 1,

c(X) = min{r ≡ s+ 2 (mod 4) | ∃ x ∈ H̃r
G(X;F2), vlx �= 0 for all l ≥ 0} − 2.

Concretely, the Borel cohomology of X looks like the Borel cohomology of S0

in high enough degrees (after a grading shift by s). Indeed, forgetting the action

of q for the moment, we see that as an F2[v]-module, H̃∗
G(X;F2) consists of some

F2[v]-torsion part and three summands isomorphic to F2[v], supported in degrees
congruent to s, s+1, and s+2 modulo 4. Since X is a finite CW complex, we have
that H̃∗

G(X;F2) is finitely generated as an F2[v]-module, so its F2[v]-torsion part is
bounded above in grading. The quantities a(X), b(X) + 1 and c(X) + 2 describe
the grading of 1 ∈ F2[v] in each of the F2[v]-free summands.

It is clear from the construction that

(14) a(X) ≡ b(X) ≡ c(X) ≡ s (mod 4),

and that a(X), b(X), c(X) ≥ 0.
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To explore the properties of a, b, c further, it is helpful to introduce an “infinity”
version of Borel cohomology,

∞H̃∗
G(X;F2) = image

(
H̃∗

G(X;F2) −→ v−1H̃∗
G(X;F2)

)
.

Observe that ∞H̃∗
G(X;F2) can be identified with the quotient of H̃∗

G(X;F2)
by the kernel of vl for l � 0. This quotient R-module is the F2[v]-free part of

H̃∗
G(X;F2), consisting of the three summands mentioned above.

Note also that ∞H̃∗
G(X;F2) is a gradedR-submodule of v−1H̃∗

G(X;F2)∼=(v−1R)[s]
supported in non-negative degrees. Let n be a negative number congruent to smod-
ulo 4. The submodule of (v−1R)[s] consisting of all elements in grading ≥ n can be

identified with R[n], so that ∞H̃∗+n
G (X;F2) becomes a graded ideal of the ring R.

Moreover, we must have v−1
(∞

H̃∗+n
G (X;F2)

)
= v−1R.

The following lemma describes all the possibilities for the ideal ∞H̃∗+n
G (X;F2).

Lemma 2.8. Let J be a graded ideal of R = F2[q, v]/(q
3) such that v−1J = v−1R.

Then

J = (vi, qvj , q2vk),

for some i ≥ j ≥ k ≥ 0.

Proof. Let us ignore the action of q for the moment. Thus, we view R as a graded
F2[v]-module and J as a graded submodule of R. We have a decomposition J =
J0 ⊕ J1 ⊕ J2, where Js denotes the part of J supported in degrees ≡ s (mod 4).
Then J0 is a graded submodule of F2[v], and it is nontrivial because v−1J = v−1R
implies v−1J0 = F2[v, v

−1]. Therefore, we must have J0 = (vi) for some i ≥ 0.
Similarly, we see that J1 = (qvj) and J2 = (q2vk) for some j, k ≥ 0.

We now consider the action of q. Since J must be invariant under this action
and vi ∈ J0 ⊂ J , we deduce that qvi ∈ J1, so i ≥ j. Similarly, we get j ≥ k. �

If ∞H̃∗+n
G (X;F2) = (vi, qvj , q2vk), we see that

a(X) = 4i+ n, b(X) = 4j + n, c(X) = 4k + n.

It follows from Lemma 2.8 that

(15) a(X) ≥ b(X) ≥ c(X).

Observe that if X is a space of type SWF at level s, then the suspensions ΣR̃X
and ΣHX are of type SWF at levels s+ 1 and s, respectively.

Lemma 2.9. Let X be a space of type SWF, and V a representation of G of the
form R̃n ⊕Hp, for some n, p ≥ 0. Then

a(ΣV X) = a(X)+dimV, b(ΣV X) = b(X)+dimV, c(ΣV X) = c(X)+dimV.

Proof. This follows immediately from Proposition 2.2. �

Finally, let us note that we can alternatively describe a(X), b(X), c(X) in terms

of Borel homology. If x is a nonzero element of H̃r
G(X;F2), we can complete x to

a basis of Borel cohomology in degree r and construct a dual element x∗ in Borel
homology. The condition vlx �= 0 is equivalent to 0 �= x∗ ∈ image(vl). Therefore, if
we let

(16) ∞H̃G
∗ (X;F2) :=

⋂
l≥0

image
(
vl : H̃G

∗+4l(X;F2) −→ H̃G
∗ (X;F2)

)
,
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we obtain

a(X) = min{r ≡ s (mod 4) | ∃ x, 0 �= x ∈ ∞H̃
G

r (X;F2)},(17)

b(X) = min{r ≡ s+ 1 (mod 4) | ∃ x, 0 �= x ∈ ∞H̃
G

r (X;F2)} − 1,(18)

c(X) = min{r ≡ s+ 2 (mod 4) | ∃ x, 0 �= x ∈ ∞H̃
G

r (X;F2)} − 2.(19)

2.4. Examples. The simplest example of a space of type SWF is S0, for which we
have

a(S0) = b(S0) = c(S0) = 0.

To obtain more interesting examples, suppose that G acts freely on a finite G-
CW-complex Z, and let Q = Z/G be the respective quotient. Let

Z̃ =
(
[0, 1]× Z

)
/(0, z) ∼ (0, z′) and (1, z) ∼ (1, z′) for all z, z′ ∈ Z

denote the unreduced suspension of Z, where G acts trivially on the [0, 1] factor.

We view Z̃ as a pointed G-space, with one of the two cone points being the base

point. Clearly Z̃ is of type SWF, with (Z̃)S
1

= S0. Note that the cone of the

inclusion of (Z̃)S
1

into Z̃ is the reduced suspension ΣRZ+. Information about the

Borel cohomology of Z̃ can be extracted from the long exact sequence,

· · · −→ H̃∗
G(Z̃;F2) −→ H̃∗

G(S
0;F2) −→ H̃∗+1

G (ΣRZ+;F2) −→ · · · .

Since G acts freely on Z, we have H̃∗+1
G (ΣRZ+;F2) ∼= H̃∗(Z+) ∼= H∗(Q), so the

above sequence can be written

(20) · · · −→ H̃∗
G(Z̃;F2) −→ H∗(BG;F2)

κ∗
−−→ H∗(Q;F2) −→ · · · .

The map κ∗ is induced from the map κ : Q → BG that classifies the G-bundle Z
over Q. The image of κ∗ produces the G-characteristic classes of that bundle.

Example 2.10. Let Z = G, acting on itself via left multiplication, so that the
quotient Q is a single point. As a topological space, G̃ is the suspension of two
disjoint circles. In the exact sequence (20), the map κ∗ is an isomorphism in degree

0. We deduce that H̃∗
G(G̃;F2) is isomorphic to the submodule of H∗(BG;F2) ∼=

F2[q, v]/(q
3) consisting of the elements in degrees ≥ 1. Therefore,

a(G̃) = 4, b(G̃) = c(G̃) = 0.

Example 2.11. More generally, for n ≥ 1, let

Zn =
(
S(Cn)× {0}

)
∪
(
{0} × S(jCn)

)
⊂ Cn ⊕ jCn ∼= Hn.

This is a G-invariant subset of Hn, with quotient Qn = CPn−1. (In particular,
Z1 = G is the previous example.) The bundle Zn → CP

n−1 can be viewed as
induced from the S1-bundle S(Cn) → CPn−1 via the monomorphism S1 → G.
Thus, the classifying map κ : CPn−1 → BG factors as

CP
n−1 ↪−→ CP

∞ ∼= BS1 η−→ BG.

We can figure out the map induced by η on cohomology by noticing that there
is a fiber bundle

S2 −→ CP∞ −→ HP∞,
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which double covers the bundle (3). Using the functorial properties of the Leray-
Serre spectral sequences, we see that η∗ : H∗(BG;F2) → H∗(CP∞;F2) is an iso-
morphism in degrees divisible by 4, and zero otherwise. It follows that the map

κ∗ : H∗(BG;F2) → H∗(CPn−1;F2)

is an epimorphism in degrees divisible by 4, and zero otherwise. Using this infor-
mation, we deduce from the exact sequence (20) that

(21) a(Z̃n) = 4�n/2�, b(Z̃n) = c(Z̃n) = 0.

Example 2.12. For n ≥ 1, let

Z ′
n = S(Cn)× S(jCn) ⊂ Cn ⊕ jCn ∼= Hn.

This is a G-invariant subset of Hn. We shall see in the next subsection (Exam-
ple 2.14) that

(22) a(Z̃ ′
n) = b(Z̃ ′

n) = 4n, c(Z̃ ′
n) = 4n− 4�n/2�.

2.5. Other properties. Let us understand the behavior of the invariants a, b, c
under equivariant Spanier-Whitehead duality.

Proposition 2.13. Suppose X and X ′ are spaces of type SWF that are V -dual,
for some G-representation V ∼= R̃n ⊕Hp. Then

(23) a(X ′) = dimV − c(X), b(X ′) = dimV − b(X), c(X ′) = dimV − a(X).

Proof. Let m = dimV = n + 4p, and assume that X is of type SWF at level s.

By the definition of V -duality, the fixed point sets XS1 ∼= (R̃s)+ and (X ′)S
1

are
non-equivariantly n-dual. Therefore, X ′ must be of type SWF at level n− s.

Using the isomorphism (7) and the exact sequence (8), we see that the Borel
homology of X is related to the Borel cohomology of X ′ by a long exact sequence
of R-modules,

(24) · · · −→ H̃m−∗
G (X ′;F2) −→ tH̃G

∗ (X;F2) −→ H̃G
∗−2(X;F2) −→ · · · .

The Tate homology of X can be computed using the properties mentioned at

the end of Subsection 2.2. Since X −XS1

has a free G-action, Equations (10) and
(12) combined with excision and suspension invariance imply that

tH̃G
∗ (X;F2) ∼= tH̃G

∗ (XS1

;F2) ∼= tH̃G
∗−s(S

0;F2) ∼= (v−1R)[s+2].

Let us study the exact sequence (24) more closely. Since every element of v−1R is

in the image of vl for all l, it follows that the map from tH̃G
∗ (X;F2) to H̃G

∗−2(X;F2)

factors through the submodule ∞H̃G
∗−2(X;F2). Similarly, since vl is an isomorphism

on v−1R for all l, the map from H̃m−∗
G (X ′;F2) to tH̃

G
∗ (X;F2) must take the kernel of

vl to zero; i.e., it must factor through the quotient module ∞H̃m−∗
G (X ′;F2). (Recall

that ∞H̃∗
G was identified with the quotient ofH∗

G by vl for l � 0.) Therefore, we can
write a trimmed version of the exact sequence (24) that involves only the “infinity”
parts of Borel homology and cohomology. After shifting degrees by s+ 2, it reads

(25) · · · −→ ∞H̃
m−s−2−∗
G (X ′;F2) −→ (v−1R)∗ −→ ∞H̃

G

∗+s(X;F2) −→ · · · .

The exactness of (25) follows from the exactness of (24).
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Recall that the infinity parts of Borel homology and cohomology are determined
by the invariants a, b, and c. Precisely, we have

∞H̃
m−s−2−r

G (X ′;F2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F2 if r = m− a(X ′)− s− 4j − 2, j ≥ 0,

F2 if r = m− b(X ′)− s− 4j − 3, j ≥ 0,

F2 if r = m− c(X ′)− s− 4j − 4, j ≥ 0,

0 otherwise,

and

∞H̃
G

r+s(X;F2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F2 if r = a(X)− s+ 4j, j ≥ 0,

F2 if r = b(X)− s+ 4j + 1, j ≥ 0,

F2 if r = c(X)− s+ 4j + 2, j ≥ 0,

0 otherwise.

Note that a(X), b(X), and c(X) are all congruent to s modulo 4, and similarly
a(X ′), b(X ′), and c(X ′) are all congruent to n − s (hence to m − s = n + 4p − s)
modulo 4. Taking into account the inequalities (15) for the invariants of X and
X ′, an analysis of the exact sequence (25) shows that we must have the desired
constraints (23). �

Example 2.14. Let Zn be the space considered in Example 2.11. Its unreduced
suspension Z̃n can be identified with the subset(

Cn × {0}
)
∪
(
{0} × jCn

)
∪ {∞} ⊂ (Cn ⊕ jCn)+ ∼= (Hn)+.

The quotient (Hn)+/Z̃n admits a G-equivariant deformation retraction onto the

unreduced suspension Z̃ ′
n of the space Z ′

n = S(Cn) × S(jCn) from Example 2.12.

It follows from [35, Theorem 4.1] that Z̃ ′
n is Hn-dual to Z̃n. The calculations in

(21) together with Proposition 2.13 imply the results for a(Z̃ ′
n), b(Z̃

′
n), c(Z̃

′
n) stated

in (22).

Another useful result is the behavior of a(X), b(X), c(X) under a certain kind of
equivariant maps.

Proposition 2.15. Suppose X and X ′ are spaces of type SWF at the same level
m, and suppose that f : X → X ′ is a G-equivariant map whose S1-fixed point set
map is a G-homotopy equivalence. Then

a(X) ≤ a(X ′), b(X) ≤ b(X ′), c(X) ≤ c(X ′).

Proof. Since the S1-fixed point set map associated to f is a G-homotopy equiva-
lence, the functoriality of the localization maps in (13) implies that f induces an
isomorphism on Borel cohomology after inverting v. Given the structure of Borel
cohomology for a space of type SWF, this means that f induces an isomorphism on
Borel cohomology in large enough degrees. By taking duals, we see that the map
induced by f on Borel homology

f∗ : H̃G
∗ (X;F2) → H̃G

∗ (X ′;F2)

must also be an isomorphism in large enough degrees. Since f∗ commutes with the
action of v, it must map the submodule ∞H̃G

∗ (X;F2) to
∞H̃G

∗ (X ′;F2).

Suppose we have a nonzero element x′ ∈ ∞H̃
G

r (X
′;F2) in some grading r. For any

l we can find some y′ ∈ ∞H̃
G

r+4l(X
′;F2) with x′ = vly′. If we choose l large enough,
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y′ must be of the form f∗(y) for some y ∈ ∞H̃
G

r+4l(X;F2). Let x = vly ∈ H̃G
r (X;F2).

Since y is in ∞H̃
G

∗ (X;F2), so is x; moreover, we have f∗(x) = x′, so x is nonzero.

Thus, we found a nonzero element in ∞H̃G
r (X;F2). Using the definitions of a, b, c

in terms of Borel homology, the desired inequalities follow. �

2.6. A fourth quantity. Let us describe another numerical invariant, dp(X), that
can be associated to a space X of type SWF. The quantity dp(X) depends also
on the choice of p ∈ Z, which can be either zero or a prime. Let F be a field of
characteristic p. Instead of the Pin(2)-equivariant cohomology of X, we use the
S1-equivariant cohomology with coefficients in F,

H̃∗
S1(X;F) = H̃∗(ES1

+ ∧X;F),

which is a module over H∗
S1(pt;F) = F[U ], with U in degree 2. Since S1 ⊂ G

acts trivially on R̃, suspension by R preserves S1-equivariant cohomology, up to
a degree shift. The same is true for suspension by the complex representation H;
see Remark 2.3. This is why in the S1-equivariant case we can let the field F be
arbitrary.

Localization with respect to S1 shows that, if X is of type SWF at level s,

U−1H̃∗
S1(X;F) ∼= U−1H̃∗

S1((R̃s)+;F) ∼= F[U,U−1][s].

We define

∞H̃∗
S1(X;F) = image

(
H̃∗

S1(X;F) −→ U−1H̃∗
S1(X;F)

)
,

and let dp(X) be the minimal degree of a non-zero element in ∞H̃∗
S1(X;F). The

same methods as in the G-equivariant case can be used to prove the analogues
of Lemma 2.9, Proposition 2.13, and Proposition 2.15 for dp instead of a, b, c. In
particular, if X and X ′ are V -dual, we have

dp(X
′) = dimV − dp(X).

The S1-equivariant and G-equivariant cohomologies of a space are related to each
other by equivariant transfer; see, for example, [5, Ch. III] or [9, Proposition 9.13].
Precisely, the element j ∈ G induces an involution on S1-equivariant cohomology.

Let
(
H∗

S1(X;F)
)j

denote the fixed point set of this involution. If p �= 2, we have a
transfer isomorphism,

H∗
G(X;F) ∼=

(
H∗

S1(X;F)
)j
.

However, equivariant transfer fails over F2, and the invariants a, b, c are defined in
terms of Borel cohomology with coefficients in F2. Because of this, there does not
seem to be any direct relation between dp and the invariants a, b, c.

Example 2.16. Consider the space Zn from Example 2.11, with unreduced suspen-
sion Z̃n. The same methods used to compute a(Zn), b(Zn), and c(Zn) can be
applied to show that

dp(Z̃n) = 2n,

for any p. In particular, Z̃0 and Z̃1 have the same values of a, b, and c, but different
values for dp.
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3. Pin(2)-Equivariant Seiberg-Witten Floer Homology

In this section we review the construction of the Seiberg-Witten Floer spectrum
from [36] and explain the changes needed to take into account the full Pin(2)-
symmetry of the equations. Our focus is not the spectrum itself, but rather its
equivariant homology. This homology can be defined without reference to spectra
and, to keep the exposition simple, this is what we do. For completeness, we also
discuss the construction of the Floer spectrum, but only briefly—in Subsection 3.4.

Here is a rough sketch of what follows: Given a rational homology 3-sphere Y ,
we consider a finite dimensional approximation of the Seiberg-Witten equations on
Y . (This is inspired by a similar approximation used by Bauer and Furuta for
the Seiberg-Witten equations in four dimensions [4, 24].) In three dimensions, the
approximation takes the form of a gradient flow, to which one can associate a based
Pin(2)-space called the (equivariant) Conley index. The Pin(2)-homotopy type of
the Conley index is invariant under deformations. As we consider larger finite-
dimensional approximations, the Conley index changes by suspension. We take its
suitably normalized Borel homology to be our definition of the Pin(2)-equivariant
Seiberg-Witten Floer homology. We show that the Conley index is a space of type
SWF, so (using the methods from Section 2) we can extract from it three quantities
α, β, and γ. We then show that these invariants satisfy the properties advertised
in the Introduction, and we compute them in a few examples.

3.1. The Seiberg-Witten equations. Let Y be a rational homology 3-sphere,
g a metric on Y , s a spin structure on Y , and S the spinor bundle for s. Let
ρ : TY → End(S) denote the Clifford multiplication, and /∂ : Γ(S) → Γ(S) the
Dirac operator. Consider the configuration space

C(Y, s) = iΩ1(Y )⊕ Γ(S).

The gauge group G = C∞(Y, S1) acts on C(Y, s) by u · (a, φ) = (a−u−1du, u ·φ).
We define the normalized gauge group G0 to consist of those u = eiξ ∈ G such that∫
Y
ξ = 0. We have a global Coulomb slice,

V = i ker d∗ ⊕ Γ(S) ⊂ C(Y, s).
Given (a, φ) ∈ C(Y, s), there is a unique element of V which is obtained from (a, φ)
by a normalized gauge transformation; we call this element the Coulomb projection
of (a, φ).

In addition to the gauge symmetry, we have an action of the group G = Pin(2) =
S1 ∪ S1j on C(Y, s). Indeed, since the spin bundle S has structure group SU(2) =
S(H), there is a natural action of G on Γ(S) by left multiplication.1 On forms
a ∈ iΩ1(Y ), we let S1 ⊂ G act trivially, and j ∈ G act by multiplication by −1.
Note that the action of S1 ⊂ G on C(Y, s) coincides with that of the constant
gauge transformations. Observe also that the Coulomb slice V is preserved by the
G-action.

Next, consider the Chern-Simons-Dirac functional CSD : C(Y, s) → R, given by

CSD(a, φ) =
1

2
(

∫
Y

〈φ, /∂φ+ ρ(a)φ〉dvol −
∫
Y

a ∧ da).

1If we identify the spinor bundle with C2, then the j action takes (v,w) to (−w̄,−v̄). We further
identify C2 with the quaternions by (v,w) → v + wj, and then j acts by left multiplication. Our
conventions are different from [24], where G acted on the right.
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Its critical points are the solutions to the Seiberg-Witten equations,

∗da+ τ (φ, φ) = 0, /∂φ+ ρ(a)φ = 0,

where τ (φ, φ) = ρ−1(φ ⊗ φ∗)0 ∈ Ω1(Y ; iR). One can readily check that the CSD
functional is gauge invariant and G-invariant.

Consider the restriction of CSD to the global Coulomb slice V . By measuring
the length of the projections of tangent vectors to local Coulomb slices, we obtain a
Riemannian metric g̃ on V such that the trajectories of the gradient flow of CSD |V
are the Coulomb projections of the original gradient flow trajectories in C(Y, s). In
V with the metric g̃, we can write the flow trajectories of ∇(CSD |V ) as

∂

∂t
x(t) = −(�+ c)(x(t)),

for

�(a, φ) = (∗da, /∂φ)
c(a, φ) = (π ◦ τ (φ, φ), ρ(a)φ− iξ(φ)φ),

where π : Ω1(Y ; iR) → i ker d∗ denotes the orthogonal projection, and ξ(φ) ∈ Ω0(Y )
is determined by dξ(φ) = i(1− π) ◦ τ (φ, φ) and

∫
Y
ξ(φ) = 0.

For any integer k ≥ 0, let V(k) denote the completion of V with respect to the

L2
k Sobolev norm. The gradient of CSD on V extends to a map

�+ c : V(k+1) → V(k),

such that � is a linear Fredholm operator, and c is compact. The corresponding
flow lines are called Seiberg-Witten trajectories (in Coulomb gauge). Seiberg-Witten
trajectory x = (a, φ) : R → V is said to be of finite type if CSD(x(t)) and ‖φ(t)‖C0

are bounded in t.
Note that both � and c are G-equivariant maps.

3.2. Finite-dimensional approximation and the Conley index. Let V ν
τ be

the finite-dimensional subspace of V spanned by the eigenvectors of � with eigenval-
ues in the interval (τ, ν]. The orthogonal projection from V to V ν

τ will be denoted
p̃ντ . We want to modify it to make it smooth in ν and τ . To do this, choose a
smooth, non-negative function χ : R → R that is non-zero exactly on (0, 1), and
such that

∫
R
χ(θ)dθ = 1. Then set

pντ =

∫ 1

0

χ(θ)p̃ν−θ
τ+θdθ.

Consider the restriction of CSD to V ν
τ . The gradient flow equation becomes

(�+ pντc)(x(t)) = − ∂

∂t
x(t).

We refer to its solutions as approximate Seiberg-Witten trajectories.
Fix a natural number k ≥ 4. There exists a constant R > 0, such that all

Seiberg-Witten trajectories x = (a, φ) : R → V of finite type are contained in
B(R), the ball of radius R in V(k+1). The following is a corresponding compactness
result for approximate Seiberg-Witten trajectories.

Proposition 3.1 (Proposition 3 in [36]). For any ν and −τ sufficiently large (com-
pared to R), if x : R → V ν

τ is a trajectory of the gradient flow � + pντ c, and x(t) is

in B(2R) for all t, then in fact x(t) is contained in B(R).
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Pick a smooth, G-equivariant function u : V ν
τ → R that vanishes outside B(3R)

and is the identity on B(2R). Then u(�+pντc) is a compactly supported vector field
on V ν

τ , which generates a global flow on V ν
τ ,

ϕν
τ = {(ϕν

τ )t : V
ν
τ → V ν

τ }t∈R.

Let us recall a few basic notions of Conley index theory, following [7]. If we have
a one-parameter subgroup ϕ = {ϕt} of diffeomorphisms of a manifold M , and a
compact subset A ⊆ X, define

Inv(A, φ) = {x ∈ A | ϕt(x) ∈ A for all t ∈ R}.
We say that a compact subset S ⊆ M is an isolated invariant set if it has an

isolating neighborhood A, that is, a compact set A ⊆ M such that S = Inv(A,ϕ) ⊆
int(A).

Definition 3.2. Let S be an isolated invariant set. An index pair (N,L) for S is
a pair of compact sets L ⊆ N ⊆ M such that

(i) Inv(N − L,ϕ) = S ⊂ int (N − L);
(ii) For all x ∈ N , if there exists t > 0 such that ϕt(x) is not in N , there exists

0 ≤ τ < t with ϕτ (x) ∈ L (L is an exit set for N);
(iii) Given x ∈ L, t > 0, if ϕs(x) ∈ N for all 0 ≤ s ≤ t, then ϕs(x) is in L for

0 ≤ s ≤ t (L is positively invariant in N).

It was proved by Conley [7] that any isolated invariant set S admits an index
pair. The Conley index for an isolated invariant set S is defined to be the pointed
space

I(S) := (N/L, [L]).

The pointed homotopy type of I(S) is an invariant of the triple (X,ϕt, S). More-
over, the Conley index is invariant under continuous deformations of the flow, as
long as S remains isolated in a suitable sense.

Floer [15] and Pruszko [49] developed an equivariant refinement of the Conley
index theory. If a Lie group G acts smoothly on M preserving the flow ϕ and
the set S, there exists a G-equivariant index pair (N,L) for S, and the Conley
index IG(S) = (N/L, [L]) is well-defined up to G-equivariant homotopy equivalence.
Furthermore, it was shown by Ge↪ba [27, Proposition 5.6] that one can choose N
and L so that IG(S) is a finite G-CW complex.

Returning to the situation at hand, consider the flow ϕν
τ on V ν

τ . Let Sν
τ denote

the set of points that lie on the trajectories of ϕν
τ inside B(2R). Recall from

Proposition 3.1 that these trajectories stay inside B(R). Therefore, Sν
τ is an isolated

invariant set, and we can associate to it a G-equivariant Conley index,

Iντ = IG(S
ν
τ ).

3.3. Pin(2)-equivariant Seiberg-Witten Floer homology. Let us understand
to what extent the G-homotopy type of the Conley index Iντ depends on the choices
made in its construction. From the general Conley index theory we know that it is a
deformation invariant as long as we do not change the ambient space V ν

τ . Therefore,
the only choices we need to consider are ν � 0, τ � 0, and the Riemannian metric
g.

It is shown in [36, Section 7] that when we increase the upper cutoff ν, the
Conley index Iντ is unchanged (up to equivalence). On the other hand, when we
decrease the lower cutoff from τ to τ ′ < τ , the Conley index changes by suspension
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by the G-representation V τ
τ ′ . We know from Proposition 2.2 that Borel homology is

invariant under suspension, up to a shift in grading. It follows that the normalized
Borel homology

(26) SWFHG
∗ (Y, s, g) := H̃G

∗+dimV 0
τ
(Iντ ;F2)

is an invariant of the triple (Y, s, g).
The dependence on g was also studied in [36]. Suppose we deform the metric in

a one-parameter family {gt}t∈[0,1], and we choose ν � 0 and τ � 0 such that they

are not eigenvalues of � = (∗d, /∂) at any time during the deformation. (Such choices
exist if the deformation is small.) Then the dimension of V ν

τ does not change, and
the properties of the Conley index show that it is invariant under this deformation,
up to G-equivalence.

Nevertheless, if we have a deformation of g as above, the homology SWFHG
∗ (Y, s, g)

from (26) may change by a shift in degree. This is because the dimension of V 0
τ

changes by the spectral flow of the Dirac operator /∂. (By contrast, ∗d has trivial
spectral flow.) The spectral flow of /∂ is controlled by a quantity

n(Y, s, g) ∈ 1

8
Z,

which can be defined as follows. (Compare [36, Section 6].) Pick a compact, spin
4-manifold (W, t) with boundary (Y, s). Equip W with a Riemannian metric such
that a neighborhood of the boundary is isometric to [0, 1]× Y . Let /D be the Dirac
operator on W with spectral boundary conditions as in [3], and set

(27) n(Y, s, g) = indC( /D) +
σ(W )

8
.

It can be shown that n(Y, s, g) is independent of the choice of (W, t), and that
during a deformation {gt}t∈[0,1] of the metric on Y , the spectral flow of /∂ is given
by the formula

S.F.(/∂) = n(Y, s, g0)− n(Y, s, g1).

With this in mind, we define

(28) SWFHG
∗ (Y, s) := SWFHG

∗+2n(Y,s,g) = H̃G
∗+dimV 0

τ +2n(Y,s,g)(I
ν
τ ;F2)

to be the G-equivariant Seiberg-Witten Floer homology of (Y, s). The same argu-
ments as in [36, proof of Theorem 1] imply the following proposition.

Proposition 3.3. Let Y be a rational homology 3-sphere and s a spin structure on
Y . The isomorphism class of SWFHG

∗ (Y, s), as a module over R ∼= F2[q, v]/(q
3),

is an invariant of the pair (Y, s).

Remark 3.4. The homology SWFHG
∗ is the G-equivariant analogue of the version

}HM of monopole Floer homology, as defined by Kronheimer and Mrowka [32].
Instead of the Borel homology of the Conley index Iντ , one could take its (suitably
normalized) co-Borel and Tate homologies, and obtain the G-equivariant analogues

of ĤM and HM .
Since our spectrum-based construction is different from the one in [32], we have

chosen the notation SWFH rather than }HM .
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3.4. A Pin(2)-equivariant Seiberg-Witten Floer spectrum. As an aside, in
this subsection we explain how the Conley indices Iντ fit naturally into a (metric-
dependent) suspension spectrum SWF(Y, s, g).

Following [35, Chapter I, Section 2], we define a G-universe U to be a countably
infinite dimensional representation of G with a G-invariant inner product, such that

• U contains the trivial representation R, and
• U contains infinitely many copies of each of its finite dimensional subrep-
resentations.

Let U be a G-universe. A G-prespectrum X indexed on U consists of pointed
G-spaces X(U) for each finite dimensional subrepresentation U ⊂ U , together with
based maps

σU ′−U : ΣU ′−UX(U) → X(U ′),

for all U ⊆ U ′, where U ′ − U denotes the orthogonal complement of U in U ′. The
maps are required to satisfy an appropriate transitivity condition.

AG-prespectrumX is called aG-spectrum if the adjoint mapsX(U)→ΩU ′−UX(U ′)
are homeomorphisms. It is shown in [35, Chapter I] that any G-prespectrum can
be turned into a G-spectrum by a “spectrification” functor.

Recall from the previous subsections that as we change the value of ν � 0, the
Conley indices Iντ change by G-equivalences, whereas if we change τ � 0, they
change by suspensions. Let us fix ν and τ and consider the universe

U = V 0
−∞ ⊕ R∞

consisting of the eigenspaces of � with non-positive eigenvalues (with the L2 inner
product), together with infinitely many copies of the trivial representation R. Note

that V 0
∞ is the direct sum of infinitely many copies of the representations R, R̃, and

H of G = Pin(2).
Define a G-prespectrum X = swf(Y, s, g, ν, τ ) as the formal desuspension of Iντ

by V 0
τ , that is,

X(U) =

{
ΣU−V 0

τ Iντ if V 0
τ ⊆ U,

∗ otherwise,

with the maps σU ′−U being the obvious identifications when V 0
τ ⊆ U ⊆ U ′. (Com-

pare [35, Definition 4.1].)
We denote by SWF(Y, s, g, ν, τ ) the spectrification of swf(Y, s, g, ν, τ ). The argu-

ments in [36, proof of Theorem 1] can be used to prove Proposition 3.5.

Proposition 3.5. The G-spectrum SWF(Y, s, g) := SWF(Y, s, g, ν, τ ) is an invari-
ant of the triple (Y, s, g), up to stable G-homotopy equivalence (that is, equivalence
in the homotopy category of spectra indexed by U).

We can describe the metric-dependent Floer homology SWFHG
∗ (Y, s, g) from

(26) as the G-equivariant homology of the spectrum SWF(Y, s, g), in the sense of
[34, 35]. From (28) we deduce that

SWFHG
∗ (Y, s) = H̃G

∗+2n(Y,s,g)(SWF(Y, s, g)).

As we vary the metric g, the universe U changes, and it is not possible to
identify these different universes in a natural way. Nevertheless, by analogy with
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the construction in [36, Section 6], one could define a metric-independent invari-
ant SWF(Y, s) that lives in an G-equivariant analogue of the classical Spanier-

Whitehead category. Thus, one can see that SWFHG
∗ (Y, s) is well-defined as an

R-module, up to canonical isomorphism. (I would like to thank Mikio Furuta for
this observation.)

3.5. Numerical invariants. Let us return to the G-equivariant Seiberg-Witten
Floer homology, defined in (28) as the shifted Borel homology of the Conley index
Iντ . To be able to apply the constructions from Section 2.3, we need Lemma 3.6.

Lemma 3.6. For all ν,−τ � 0 we can find an index pair (N,L) for Sν
τ such that

the Conley index Iντ = N/L is a space of type SWF at some level

s ≡ dimV 0
τ (mod 4).

Proof. To understand the action of G on Iντ , we use the arguments in [36, Section 8].
Precisely, note that the Seiberg-Witten equations have a unique reducible solution
(a, φ) = (0, 0). We can perturb the CSD functional by a one-form ω ∈ iΩ1(Y ) to
get

CSDω(a, φ) = CSD(a, φ) +
1

2

∫
Y

a ∧ dω.

There is still one reducible solution, (ω, 0), and CSDω evaluates to zero on this
solution.

We construct a new isolated invariant set T = T ν
τ ⊂ V ν

τ using the flow of CSDω

instead of the flow of CSD . Let us interpolate linearly between 0 and ω, and
denote by {�t}t∈[0,1] the linearizations of the Seiberg-Witten maps on V during
this interpolation. If the perturbation ω is small, we can choose ν and τ such that
they are not eigenvalues of any �t for t ∈ [0, 1]. If this is the case, the original
Conley index Iντ = I(Sν

τ ) is G-homotopy equivalent to the new Conley index I(T ν
τ ).

For a generic choice of ω, we can arrange so that the new reducible solution,
(ω, 0), is a nondegenerate critical point of CSDω|V , and such that there are no
irreducible critical points x with CSDω(x) ∈ (0, ε), for some fixed ε > 0. In this
situation, in addition to T = T ν

τ , we can identify four other isolated invariant sets
in the gradient flow of CSDω|V ν

τ
:

• T irr
>0 = the set of (irreducible) critical points x with CSDω(x) > 0, together

with all points on the flow trajectories between the critical points of this
type;

• T irr
≤0 = same as above, but with CSDω(x) ≤ 0 and requiring x to be irre-

ducible;
• T≤0 = same as above, with CSDω(x) ≤ 0 but allowing x to be reducible or
irreducible;

• Θ = {(ω, 0)}, the reducible critical point by itself.

The Conley indices associated to these sets are related to each other by attractor-
repeller coexact sequences:

(29) I(T≤0) −→ I(T ) −→ I(T irr
>0) −→ ΣI(T≤0) −→ · · ·

and

(30) I(T irr
≤0) −→ I(T≤0) −→ I(Θ) −→ ΣI(T irr

≤0) −→ · · · .
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The action of G is free in neighborhoods of T irr
>0 and T irr

≤0, so it is also free on

the respective Conley indices (away from the base points). Moroever, since the
reducible is nondegenerate, we have

I(Θ) ∼= (V 0
τ )

+ ∼= (R̃s ⊕Hp)+

for some s, p ≥ 0. From the coexact sequences we deduce that the S1-fixed point
set of I(T ) is G-equivalent to the S1-fixed point set of I(Θ), which is the sphere

(R̃s)+. Also, the action of G must be free on the complement of I(T )S
1

.
This proves that Iντ = I(Sν

τ ) ∼ I(T ν
τ ) is of type SWF for some particular ν

and τ . In turn, it implies the same thing for all ν′ > ν and τ ′ < τ , because the
corresponding Conley indices can only change by suspensions by R̃ or H (up to
G-homotopy equivalence), and the property of being of type SWF is preserved by
such suspensions.

Since V 0
τ

∼= R̃s ⊕ Hp and dimH = 4, we also know that the level s of Iντ is
congruent to dimV 0

τ modulo 4. �

Recall from Section 2.3 that to any space X of type SWF at level s one can
associate three quantities a(X), b(X), c(X) ∈ Z, all congruent to s modulo 4.

For ν and −τ sufficiently large, let us define

α(Y, s) =
(
a(Iντ )− dimV 0

τ

)
/2− n(Y, s, g),(31)

β(Y, s) =
(
b(Iντ )− dimV 0

τ

)
/2− n(Y, s, g),(32)

γ(Y, s) =
(
c(Iντ )− dimV 0

τ

)
/2− n(Y, s, g).(33)

Proposition 3.7. If Y is a rational homology 3-sphere, and s is a spin structure
on Y , then the quantities α(Y, s), β(Y, s), γ(Y, s) ∈ 1

8Z are invariants of the pair
(Y, s). Moreover, we have

α(Y, s) ≡ β(Y, s) ≡ γ(Y, s) ≡ −μ(Y, s) (mod 2Z),

where μ(Y, s) is the generalized Rokhlin invariant.

Proof. By analogy with (16), set

∞SWFHG
∗ (Y, s) :=

⋂
l≥0

image
(
vl : SWFHG

∗+4l(Y, s) −→ SWFHG
∗ (Y, s)

)
.

Let s be the level of the Conley index Iντ for some cutoffs ν and τ . We know
from Lemma 3.6 that s is congruent mod 4 to the dimension of V 0

τ . Using the
descriptions (17), (18), (19) of a, b, c, and the description (28) of the G-equivariant
Seiberg-Witten Floer homology, we can write

α(Y, s) = 1
2 min{r ≡ −2n(Y, s, g) (mod 4Z) | ∃ x, 0 �= x ∈ ∞SWFHG

r (Y, s)},
(34)

β(Y, s) = 1
2

(
min{r ≡ −2n(Y, s, g) + 1 (mod 4Z) | ∃ x, 0 �= x ∈ ∞SWFHG

∗ (Y, s)} − 1
)
,

(35)

γ(Y, s) = 1
2

(
min{r ≡ −2n(Y, s, g) + 2 (mod 4Z) | ∃ x, 0 �= x ∈ ∞SWFHG

∗ (Y, s)} − 2
)
.

(36)

Proposition 3.3 now implies that α, β, and γ are invariants of (Y, s).
Recall that a(Iντ ), b(I

ν
τ ), and c(Iντ ) are all congruent mod 4 to the level s, and

hence to the dimension of V 0
τ . Looking at the definitions (31), (32), (33), we deduce
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that α, β, and γ are congruent to −n(Y, s, g) modulo 2Z. The quantity n(Y, s, g)
was introduced in (27) as

n(Y, s, g) = indC( /D) +
σ(W )

8
.

Since the Dirac operator /D goes between quaternionic vector spaces, its complex
index is divisible by 2. It follows that α(Y, s), β(Y, s), and γ(Y, s) are congruent to
σ(W )/8 modulo 2Z. The reduction of σ(W )/8 modulo 2Z is exactly the generalized
Rokhlin invariant μ(Y, s). �

Proposition 3.8. Let (Y, s) be an oriented rational homology 3-sphere equipped
with a spin structure s. Let −Y denote Y with the opposite orientation. Then

α(−Y, s) = −γ(Y, s), β(−Y, s) = −β(Y, s), γ(−Y, s) = −α(Y, s).

Proof. The Seiberg-Witten flow for −Y is the reverse of the Seiberg-Witten flow for
Y . Orientation reversal also reverses the signs of the eigenvalues of �, so if we denote
by V̄ the Coulomb slice for −Y , then the finite dimensional approximation V ν

τ can
be identified with V̄ −τ

−ν . (Here, we pick ν and τ so that they are not eigenvalues of
l.)

Cornea [8] proved that on a stably parallelized manifold (such as V ν
τ
∼= V̄ −τ

−ν ) the
Conley indices associated to a flow and its inverse are Spanier-Whitehead dual to
each other. His result can be extended to the G-equivariant setting. Precisely, one
can adapt [8, proof of Theorem 3.5] to show that we can find index pairs (N,L)
and (N,L′) for Sν

τ under the flow ϕν
τ and its reverse, such that N,L, and L′ satisfy

the hypotheses of Lemma 2.5, with N being embedded in the representation V ν
τ .

It follows that the corresponding Conley indices are equivariantly (V ν
τ )-dual.

The Atiyah-Patodi-Singer index theorem gives

n(Y, s, g) + n(−Y, s, g) = dimC(ker /∂).

Observe also that

dimV 0
τ + dim V̄ 0

−ν + 2dimC(ker /∂) = dimV ν
τ .

The desired result now follows from the two equalities above, together with Propo-
sition 2.13 and the formulas (31), (32), (33). �

3.6. Behavior under cobordisms. LetW be a compact four-manifold with bound-
ary Y , such that b1(Y ) = 0. Suppose we have a spin structure t on W whose re-
striction to Y is s. Following [36, Section 9] (as corrected by Khandhawit in [29]),
we can do finite dimensional approximation for the Seiberg-Witten equations on W
with suitable boundary conditions.

We assume for simplicity that b1(W ) = 0. Pick a Riemannian metric g on W
so that the boundary has a neighborhood isometric to [0, 1] × Y . Let S+ and S−

denote the two spinor bundles on W , and Ω1
g(W ) denote the space of one-forms on

W in double Coulomb gauge, as in [29, Definition 1]. For a fixed cutoff ν � 0, we
can define a Seiberg-Witten map for W ,

S̃W
ν
: iΩ1

g(W )⊕ Γ(S+) −→ iΩ2
+(W )⊕ Γ(S−)⊕ V ν

−∞.

After doing finite dimensional approximation, we obtain from here a based map,

(37) Ψν,τ,U,U ′ : (U ′)+ −→ U+ ∧ Iντ ,
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where U ′ ⊂ iΩ1
g(W ) ⊕ Γ(S+) and U ⊂ iΩ2

+(W ) ⊕ Γ(S−) are finite dimensional
G-invariant subspaces. (In fact, U ′ is determined by U , ν, and τ ; we refer to
[36, Section 9] for more details.) As representations of G, we have

U ′ ∼= R̃m′ ⊕Hp′
, U ∼= R̃m ⊕Hp,

where m′, p′,m, p ≥ 0 are related by the formulas

m′ −m = dimR V 0
τ (R̃)− b+2 (W ),

(38)

p′ − p = dimH V 0
τ (H) + indH( /D) =

1

4

(
dimR V 0

τ (H) + 2n(Y, s, g)− σ(W )/4
)
.(39)

Here, V 0
τ = V 0

τ (R̃) ⊕ V 0
τ (H) is the decomposition of V 0

τ into its one-form and
spinorial parts.

The S1-fixed point set of the Seiberg-Witten map S̃W
ν
is a linear Fredholm

map; see [36, Proposition 5]. Starting from here one can identify the S1-fixed point
set map of (37). This is induced on the one-point compactifications by a linear,
injective operator

(40) R̃m′ −→ R̃m ⊕ R̃s,

where s = dimR V 0
τ (R̃) is the level of Iντ as a space of type SWF. (See the proof of

Lemma 3.6.) From (38) we have m′ −m = s− b+2 (W ), so the cokernel of the map
(40) must have dimension b+2 (W ).

The discussion in the previous subsections was phrased in terms of Y being a
rational homology 3-sphere. However, it applies equally well when Y is a disjoint
union of rational homology spheres. (In [36], we worked in this greater generality.)
The Conley index Iντ coming from a disjoint union is the smash product of the
Conley indices coming from each component.

In particular, suppose we have a compact, spin cobordism (W, t) between rational
homology spheres Y0 and Y1, so that ∂W = (−Y0) ∪ Y1. Let V0, V̄0, and V1 denote
the Coulomb slices corresponding to Y0,−Y0, and Y1. To simplify notation, let us
pick eigenvalue cutoffs ν and τ = −ν, so that (V0)

ν
−ν

∼= (V̄0)
ν
−ν . Let (I0)

ν
−ν , (Ī0)

ν
−ν ,

and (I1)
ν
−ν denote the Conley indices associated to the finite-dimensional approx-

imations for the Seiberg-Witten maps on Y0,−Y0, and Y1, respectively. The map
(37) can be written as

(41) (U ′)+ −→ U+ ∧ (I1)
ν
τ ∧ (Ī0)

ν
−ν .

Recall from the proof of Proposition 3.8 that the Conley indices (I0)
ν
−ν and

(Ī0)
ν
−ν are (V0)

ν
−ν-dual to each other. Thus, we have a duality map

ε : (Ī0)
ν
−ν ∧ (I0)

ν
−ν → ((V0)

ν
−ν)

+.

Consider the smash product of the map (41) with the identity on (I0)
ν
−ν , and

the smash product of the identity on U+ ∧ (I1)
ν
−ν with the duality map ε. The

composition of these two maps takes the form

(U ′)+ ∧ (I0)
ν
−ν −→ U+ ∧ (I1)

ν
−ν ∧ ((V0)

ν
−ν)

+.

After changing the vector spaces involved by isomorphisms, we can write this more
simply as a map between suspensions,

(42) f : Σm′R̃Σp′H(I0)
ν
−ν −→ Σm′′R̃Σp′′H(I1)

ν
−ν .
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Using (38), (39), we can figure out the differences in suspension indices. Precisely,
we have

m′ −m′′ = dimR

(
(V1)

0
−ν(R̃)

)
− dimR

(
(V0)

0
−ν(R̃)

)
− b+2 (W )

and

p′ − p′′ =
1

4

(
dimR

(
(V1)

0
−ν(H)

)
− dimR

(
(V0)

0
−ν(H)

)
+2n(Y1, t|Y1

, g)− 2n(Y0, t|Y0
, g)− σ(W )/4

)
.

The S1-fixed point set of (42) is still induced (on the one-point compactifications)
by a linear injective map with cokernel of dimension b+2 (W ).

Proposition 3.9. Suppose that W is a smooth, oriented, negative-definite cobor-
dism from Y0 to Y1. Let b2(W ) denote the second Betti number of W . If W admits
a spin structure t, then

α(Y1, t|Y1
) ≥ α(Y0, t|Y0

) + 1
8b2(W ),

β(Y1, t|Y1
) ≥ β(Y0, t|Y0

) + 1
8b2(W ),

γ(Y1, t|Y1
) ≥ γ(Y0, t|Y0

) + 1
8b2(W ).

Proof. By doing surgery on loops in W , we can assume without loss of generality
that b1(W ) = 0, so we can apply the discussion in this section. Observe that
(42) is a G-equivariant map between spaces of type SWF. Furthermore, since
b+2 (W ) = 0, the associated S1-fixed point set map is a G-homotopy equivalence.
Thus, the hypotheses of Proposition 2.15 are satisfied. The results follow from that
proposition, in view of the formulas (31), (32), (33). �

Corollary 3.10. Suppose that W is a smooth oriented cobordism between rational
homology spheres Y0 and Y1, such that b2(W ) = 0. If W admits a spin structure t,
then

α(Y0, t|Y0
) = α(Y1, t|Y1

), β(Y0, t|Y0
) = β(Y1, t|Y1

), γ(Y0, t|Y0
) = γ(Y1, t|Y1

).

Proof. Apply Proposition 3.9 to both W and −W , where the latter is viewed as a
cobordism from Y1 to Y0. �

If Y is an integral homology sphere, then it has a unique spin structure s, and
we write

α(Y ) = α(Y, s), β(Y ) = β(Y, s), γ(Y ) = γ(Y, s).

Recall from the introduction that θ3H denotes the (integral) homology cobordism
group in dimension three. Corollary 3.10 implies that our three invariants descend
to maps

α, β, γ : θH3 → Z.

(We do not claim that these maps are homomorphisms.)
We can now complete the proofs of the results announced in the Introduction.

Proof of Theorem 1.1. This follows directly from Propositions 3.7, 3.8, and 3.9. �

Proof of Corollary 1.2. Observe that Y#Y being homology cobordant to S3 is the
same as Y being homology cobordant to −Y . If Y has this property, the properties
listed in Theorem 1.1 imply that β(Y ) = β(−Y ) = −β(Y ), so β(Y ) = 0 and hence
μ(Y ) = 0. �
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Remark 3.11. When we proved invariance of α, β, γ in Proposition 3.7, we used the
invariance of the isomorphism class of SWFHG

∗ (Y, s) (cf. Proposition 3.3). In turn,
this relied on the arguments from [36] about the behavior of the Conley index under
changes in the eigenvalue cutoff and the Riemannian metric. It is worth pointing
out that one can give an alternative proof of the invariance of α, β, γ (and thus
establish Theorem 1.1) by using Corollary 3.10 instead. Indeed, suppose that, a
priori, α, β, and γ depended on the metric on Y . Let g0 and g1 be two Riemannian
metrics on Y , and consider the identity cobordism I×Y with a metric that restricts
to g0 on one end and g1 on the other, and is cylindrical near the ends. Then, the
argument in Corollary 3.10 shows that α, β, γ are metric independent.

3.7. A fourth invariant. Let Y , s, g, ν, and τ be as in Section 3.3. Instead of
considering the Pin(2)-equivariant homology of the Conley index Iντ as in (28), one
can take its suitably normalized S1-equivariant homology, with coefficients in an
arbitrary field F (of characteristic p). Set

SWFH S1

∗ (Y, s;F) := H̃S1

∗+dimV 0
τ +2n(Y,s,g)(I

ν
τ ;F).

This is the S1-equivariant Seiberg-Witten Floer homology of (Y, s). It can be viewed
as the Borel homology of the S1-equivariant suspension spectrum SWF(Y, s) con-
structed in [36].

In Section 2.6 we defined a quantity dp associated to a space of type SWF. Let
us apply this to the Conley index Iντ . After a suitable normalization, it yields an
invariant

δp(Y, s) =
(
dp(I

ν
τ )− dimV 0

τ

)
/2− n(Y, s, g) ∈ 1

8Z.

Alternately, if we set

∞SWFH S1

∗ (Y, s;F) :=
⋂
l≥0

image
(
U l : SWFH S1

∗+2l(Y, s;F) −→ SWFH S1

∗ (Y, s;F)
)
,

we can write

δp(Y, s) =
1
2 min{r | ∃ x, 0 �= x ∈ ∞SWFH S1

r (Y, s;F)}.
It is customary to take F = R, so p = 0. In this case we write δ = δ0. After a

change in sign, the invariant δ is the exact analogue of the correction term defined
by Frøyshov in [20] and Kronheimer-Mrowka [32, Section 39.1]. In Heegaard Floer
theory, the counterpart of δ is one-half of the correction term d(Y, s) defined by
Ozsváth and Szabó in [44].

Remark 3.12. Although in principle the correction terms (in monopole Floer, or
Heegaard Floer theory) depend on the characteristic p of the underlying field, in
practice no examples of 3-manifolds are known where this makes a difference.

3.8. Examples. The simplest case where Seiberg-Witten Floer homology can be
computed is that of elliptic rational homology 3-spheres (quotients of S3). If Y is
such a manifold, then it admits a metric g with positive scalar curvature, so by
the arguments in [36, Section 10] or [37, Section 7.1], the Conley index Iντ is a
representation sphere, and we get that

SWFHG
∗ (Y, s)

∼= F2[q, v]/(q
3),

shifted in degree by −2n(Y, s, g). The same is true for the S1-equivariant Seiberg-
Witten Floer homology. Therefore,

α(Y, s) = β(Y, s) = γ(Y, s) = δ(Y, s) = −n(Y, s, g).



PIN(2)-EQUIVARIANT SEIBERG-WITTEN FLOER HOMOLOGY 171

In particular, for Y = S3 we obtain

α(S3) = β(S3) = γ(S3) = 0.

Next, let us consider the Brieskorn spheres Σ(2, 3, n) with gcd(6, n) = 1, oriented
as boundaries of negative definite plumbings. With these conventions, Σ(2, 3, 6m−
1) is −1/m surgery on the left-handed trefoil, and Σ(2, 3, 6m+ 1) is −1/m surgery
on the right-handed trefoil.

The S1-equivariant Floer spectrum SWF(−Σ(2, 3, n)) was computed in [37, Sec-
tion 7.2]; the Floer spectrum for Σ(2, 3, n) is its Spanier-Whitehead dual. The
calculation was based on the work of Mrowka, Ozsváth, and Yu [41], who described
the Seiberg-Witten solutions and flow trajectories for Seifert fibrations equipped
with particular Riemannian metrics. (They also used some nonstandard connec-
tions instead of the Levi-Civita connections, but finite-dimensional approximation
still works in this setting and yields the same answers.) One then uses the attractor-
repeller sequences (29), (30) to obtain information about the Floer spectrum. The
same methods as in [37, Section 7.2] can be employed to compute the G-equivariant
Seiberg-Witten Floer homology; we just have to keep track of the additional sym-
metry when describing the Seiberg-Witten flow.

When n = 12k − 1, the Seiberg-Witten equations on Σ(2, 3, 12k − 1) have one
reducible solution in degree zero and 2k irreducibles in degree one. The irreducibles
come in k pairs related by the action of j ∈ G. Each irreducible is connected to the
reducible by a single flow line. From (29), (30) we deduce that there are long exact
sequences on Borel homology,

· · · −→ H∗(BG;F2) −→ SWFHG
∗ (Σ(2, 3, 12k − 1)) −→ (Fk

2)[1] −→ · · · ,
where the subscript [1] denotes the respective degree. The same discussion as in
[37, Section 7.2] shows that the connecting map from (Fk

2)[1] to H0(BG;F2) ∼= F2

must be non-trivial. This implies that, as a module, the G-equivariant Seiberg-
Witten Floer homology of Σ(2, 3, 12k − 1) is

Fk−1
2

⊕
F2 F2

q

��

0 F2 F2

q

��

v

�� F2

q

��

v

�� 0 . . .

v

�� . . .

v

�� . . .

v

��

in degrees 1, 2, 3, . . . . In view of the formulas (34), (35), (36), we have

α(Σ(2, 3, 12k − 1)) = 2, β(Σ(2, 3, 12k − 1)) = γ(Σ(2, 3, 12k − 1)) = 0.

In particular, SWFHG
∗ (Σ(2, 3, 11)) agrees with the Borel homology of the unre-

duced suspension G̃ of G, which was discussed in Example 2.10. We should think
of G̃ as a model for the G-equivariant Floer spectrum of Σ(2, 3, 11). In fact, if
we equip Σ(2, 3, 11) with the metric from [41], we can apply the methods in [37]
to show that (for ν,−τ � 0) the Conley indices Iντ are G-equivalent to suitable

suspensions of G̃.
Next, let us consider the case n = 12k−5. This is entirely similar to n = 12k−1,

except that the reducible is in degree −2 and the irreducibles in degree −1. The
G-equivariant Seiberg-Witten Floer homology agrees to the one for Σ(2, 3, 12k−1),
shifted in degree by −2. Thus, we have

α(Σ(2, 3, 12k − 5)) = 1, β(Σ(2, 3, 12k − 5)) = γ(Σ(2, 3, 12k − 5)) = −1.
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When n = 12k + 1, there is one reducible in degree 0 and 2k irreducibles in
degree −1. As before, the irreducibles come in k pairs related by the action of j.
We find a long exact sequence

· · · −→ H∗(BG;F2) −→ SWFHG
∗ (Σ(2, 3, 12k + 1)) −→ (Fk

2)[−1] −→ · · · .

For grading reasons, the only possibility is that SWFHG
∗ (Σ(2, 3, 12k+1)) is (even

as a module) isomorphic to the direct sum H∗(BG;F2) ⊕ (Fk
2)[−1]. From here we

get

α(Σ(2, 3, 12k + 1)) = β(Σ(2, 3, 12k + 1)) = γ(Σ(2, 3, 12k + 1)) = 0.

The case when n = 12k+5 is similar, except for a degree shift by −2 in homology.
Therefore,

α(Σ(2, 3, 12k + 5)) = β(Σ(2, 3, 12k + 5)) = γ(Σ(2, 3, 12k + 5)) = 1.

We summarize our results in the following table. For comparison, we have also
included the corresponding values of the correction term δ in S1-equivariant Seiberg-
Witten Floer homology, and of the Casson invariant λ.

Brieskorn sphere α β γ δ = d/2 = −h λ

Σ(2, 3, 12k − 5) 1 −1 −1 0 −2k + 1
Σ(2, 3, 12k − 1) 2 0 0 1 −2k
Σ(2, 3, 12k + 1) 0 0 0 0 −2k
Σ(2, 3, 12k + 5) 1 1 1 1 −2k − 1

Here, the values of δ for these Brieskorn spheres can be readily deduced from
[37, Section 7.2]. They agree (up to a sign) with the values of the Frøyshov invariant
h. The latter can be computed using the surgery exact triangles in monopole Floer
homology [33], along the lines of the corresponding computation for the correction
terms d in Heegaard Floer homology [44, Section 8.1]. Finally, the values of the
Casson invariant [1] can be deduced from its surgery formula applied to the two
trefoils.

4. Further Directions

Our construction of Pin(2)-equivariant Seiberg-Witten Floer homology was lim-
ited to rational homology spheres. This is because the Seiberg-Witten configuration
space acquires non-trivial topology when b1(Y ) > 0, and doing finite dimensional
approximation in this setting becomes more difficult. Nevertheless, as mentioned in
the Introduction, we expect that one can define Pin(2)-Floer homologies for all com-
pact 3-manifolds equipped with spin structures. Both monopole Floer homology, as
constructed by Kronheimer and Mrowka in their book [32], and the Heegaard Floer
homology of Ozsváth and Szabó [46–48] are defined for arbitrary 3-manifolds. We
expect that one can construct Pin(2)-versions of these theories. Moreover, if one
were to establish Pin(2)-versions of the usual surgery exact triangles, this should
allow the computation of the invariants α, β, γ in more examples.

In particular, it would be interesting to compute our invariants for a larger class
of plumbed 3-manifolds, as was done for Heegaard Floer homology in [45]. Neumann
and Siebenmann [43, 56] independently constructed an invariant μ̄(Y, s) ∈ 1

8Z for
spin 3-manifolds that are given by plumbing spheres along a tree. The Neumann-
Siebenmann invariant reduces to the generalized Rokhlin invariant mod 2. (We
follow the conventions for μ̄ from [54], which differ from the original ones in [43]
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by a factor of 1/8.) Neumann [43] conjectured that μ̄ is a homology cobordism
invariant, and Saveliev showed this to be true when we restrict μ̄ to the class of
Seifert fibered integral homology spheres [55]; see also [21, 22]. We propose the
following conjecture.

Conjecture 4.1. If (Y, s) is a Seifert fibered rational homology 3-sphere with a
spin structure, then β(Y, s) = −μ̄(Y, s).

The conjecture holds for the Brieskorn spheres Σ(2, 3, 6m± 1) considered in the
last section.

A related question is the existence of an analogue of α, β, or γ in instanton theory.
Let I∗ denote the original instanton homology defined by Floer [16]. Saveliev [53,54]
conjectured that the quantity

ν(Y ) =
1

2

7∑
n=0

(−1)(n+1)(n+2)/2 dimQ In(Y )

is an invariant of homology cobordism and showed that ν(Y ) = μ̄(Y ) for all Seifert
fibered homology spheres. It is possible that the invariant ν (perhaps defined with
the field Q replaced by F2) is related to −β.

When Y is a Seifert fibered homology sphere, ν(Y ) = μ̄(Y ) can also be inter-
preted as half the Lefschetz number of the map induced on I∗(Y ) by the mapping
cylinder of a canonical involution on Y ; see [52]. A related interpretation exists
in the context of Seiberg-Witten theory [42, Section 11.3], using a Casson-type in-
variant λSW for 4-manifolds with the homology of S1 × S3. One can ask about the
relation between λSW and the invariants constructed in this paper.

In yet another direction, it would be interesting to understand the behavior
of Pin(2)-equivariant Floer homology (and of the invariants α, β, γ) under taking
connected sums. We expect that the connected sum of two 3-manifolds corresponds
to the smash product of their Floer spectra. The Borel homology of a smash
product is related to the Borel homology of the two pieces by an Eilenberg-Moore
spectral sequence. The possible existence of non-trivial higher differentials makes
the behavior of α, β, and γ difficult to predict.

Finally, we mention that one can turn invariants of homology cobordism into
invariants of (smooth) knot concordance. Given a knot K ⊂ S3, one simply evalu-
ates the original invariant to the double cover of S3 branched along K. This was
done for the Ozsváth-Szabó correction term d in [38]. It would be worthwhile to
study the concordance invariants associated to α, β, and γ.
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