Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Topology of quadrature domains


Authors: Seung-Yeop Lee and Nikolai G. Makarov
Journal: J. Amer. Math. Soc. 29 (2016), 333-369
MSC (2010): Primary 30C99, 30E05, 30E99, 30D05, 31A99; Secondary 76D27, 30C62
DOI: https://doi.org/10.1090/jams828
Published electronically: May 11, 2015
MathSciNet review: 3454377
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We address the problem of topology of quadrature domains, namely we give upper bounds on the connectivity of the domain in terms of the number of nodes and their multiplicities in the quadrature identity.


References [Enhancements On Off] (What's this?)

  • [1] Dov Aharonov and Harold S. Shapiro, A minimal-area problem in conformal mapping. (Abstract), Proceedings of the Symposium on Complex Analysis (Univ. Kent, Canterbury, 1973) Cambridge, Univ. Press, London, 1974, pp. 1-5. London Math. Soc. Lecture Note Ser., No. 12. MR 0412400 (54 #526)
  • [2] Dov Aharonov and Harold S. Shapiro, Domains on which analytic functions satisfy quadrature identities, J. Anal. Math. 30 (1976), 39-73. MR 0447589 (56 #5899)
  • [3] D. Aharonov and H. S. Shapiro, A minimal-area problem in conformal mapping - preliminary report: Part II, 70 pp.. Research bulletin TRITA-MAT-1978-5, Royal Institute of Technology.
  • [4] Dov Aharonov, Harold S. Shapiro, and Alexander Yu. Solynin, A minimal area problem in conformal mapping, J. Anal. Math. 78 (1999), 157-176. MR 1714449 (2000j:30040), https://doi.org/10.1007/BF02791132
  • [5] Dov Aharonov, Harold S. Shapiro, and Alexander Yu. Solynin, A minimal area problem in conformal mapping. II, J. Anal. Math. 83 (2001), 259-288. MR 1828494 (2002e:30024), https://doi.org/10.1007/BF02790264
  • [6] D. A. Brannan, Coefficient regions for univalent polynomials of small degree, Mathematika 14 (1967), 165-169. MR 0220919 (36 #3971)
  • [7] Luis A. Caffarelli, Lavi Karp, and Henrik Shahgholian, Regularity of a free boundary with application to the Pompeiu problem, Ann. of Math. (2) 151 (2000), no. 1, 269-292. MR 1745013 (2001a:35188), https://doi.org/10.2307/121117
  • [8] Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383 (94h:30033)
  • [9] V. G. Čeredničenko, Inverse Logarithmic Potential Problem, Inverse and Ill-Posed Problems Series, VSP, Leiden, The Netherlands, 1996.
  • [10] V. F. Cowling and W. C. Royster, Domains of variability for univalent polynomials, Proc. Amer. Math. Soc. 19 (1968), 767-772. MR 0227392 (37 #2976)
  • [11] Darren Crowdy, Quadrature domains and fluid dynamics, Quadrature domains and their applications, Oper. Theory Adv. Appl., vol. 156, Birkhäuser, Basel, 2005, pp. 113-129. MR 2129738 (2005m:76146), https://doi.org/10.1007/3-7643-7316-4_5
  • [12] Darren Crowdy and Jonathan Marshall, Constructing multiply connected quadrature domains, SIAM J. Appl. Math. 64 (2004), no. 4, 1334-1359. MR 2068673 (2005c:30008), https://doi.org/10.1137/S0036139903438545
  • [13] Philip J. Davis, The Schwarz function and its applications, The Mathematical Association of America, Buffalo, N.Y., 1974. The Carus Mathematical Monographs, No. 17. MR 0407252 (53 #11031)
  • [14] Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. Éc. Norm. Supér. (4) 18 (1985), no. 2, 287-343. MR 816367 (87f:58083)
  • [15] Peter L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494 (85j:30034)
  • [16] Peter Elbau and Giovanni Felder, Density of eigenvalues of random normal matrices, Comm. Math. Phys. 259 (2005), no. 2, 433-450. MR 2172690 (2006i:82034), https://doi.org/10.1007/s00220-005-1372-z
  • [17] Bernard Epstein, On the mean-value property of harmonic functions, Proc. Amer. Math. Soc. 13 (1962), 830. MR 0140700 (25 #4114)
  • [18] Bernard Epstein and M. M. Schiffer, On the mean-value property of harmonic functions, J. Anal. Math. 14 (1965), 109-111. MR 0177124 (31 #1388)
  • [19] A. N. Varchenko and P. I. Ètingof, Why the boundary of a round drop becomes a curve of order four, University Lecture Series, vol. 3, American Mathematical Society, Providence, RI, 1992. MR 1190012 (93k:58056)
  • [20] L. A. Galin, Unsteady filtration with a free surface, C. R. (Doklady) Acad. Sci. URSS (N.S.) 47 (1945), 246-249. MR 0014004 (7,229b)
  • [21] Lukas Geyer, Sharp bounds for the valence of certain harmonic polynomials, Proc. Amer. Math. Soc. 136 (2008), no. 2, 549-555. MR 2358495 (2008i:30005), https://doi.org/10.1090/S0002-9939-07-08946-0
  • [22] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523 (95d:14001)
  • [23] Björn Gustafsson and Alexander Vasilev, Conformal and potential analysis in Hele-Shaw cells, Advances in Mathematical Fluid Mechanics, Birkhäuser Verlag, Basel, 2006. MR 2245542 (2008b:76055)
  • [24] Björn Gustafsson and Harold S. Shapiro, What is a quadrature domain?, Quadrature domains and their applications, Oper. Theory Adv. Appl., vol. 156, Birkhäuser, Basel, 2005, pp. 1-25. MR 2129734 (2006a:30002), https://doi.org/10.1007/3-7643-7316-4_1
  • [25] Björn Gustafsson, Quadrature identities and the Schottky double, Acta Appl. Math. 1 (1983), no. 3, 209-240. MR 726725 (85g:30071), https://doi.org/10.1007/BF00046600
  • [26] Björn Gustafsson, Singular and special points on quadrature domains from an algebraic geometric point of view, J. Anal. Math. 51 (1988), 91-117. MR 963151 (90i:30066), https://doi.org/10.1007/BF02791120
  • [27] Björn Gustafsson, Applications of variational inequalities to a moving boundary problem for Hele-Shaw flows, SIAM J. Math. Anal. 16 (1985), no. 2, 279-300. MR 777468 (86m:35155), https://doi.org/10.1137/0516021
  • [28] Björn Gustafsson, On quadrature domains and an inverse problem in potential theory, J. Anal. Math. 55 (1990), 172-216. MR 1094715 (92c:31013), https://doi.org/10.1007/BF02789201
  • [29] Björn Gustafsson and Makoto Sakai, Properties of some balayage operators, with applications to quadrature domains and moving boundary problems, Nonlinear Anal. 22 (1994), no. 10, 1221-1245. MR 1279981 (95h:31007), https://doi.org/10.1016/0362-546X(94)90107-4
  • [30] Björn Gustafsson, Chiyu He, Peyman Milanfar, and Mihai Putinar, Reconstructing planar domains from their moments, Inverse Problems 16 (2000), no. 4, 1053-1070. MR 1776483 (2001k:44010), https://doi.org/10.1088/0266-5611/16/4/312
  • [31] Håkan Hedenmalm and Nikolai Makarov, Coulomb gas ensembles and Laplacian growth, Proc. Lond. Math. Soc. (3) 106 (2013), no. 4, 859-907. MR 3056295, https://doi.org/10.1112/plms/pds032
  • [32] Kurt Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91 (1998), no. 1, 151-204. MR 1487983 (2000m:82026), https://doi.org/10.1215/S0012-7094-98-09108-6
  • [33] Lavi Karp and Henrik Shahgholian, Regularity of a free boundary problem, J. Geom. Anal. 9 (1999), no. 4, 653-669. MR 1757583 (2001f:35444), https://doi.org/10.1007/BF02921977
  • [34] Dmitry Khavinson and Grzegorz Światek, On the number of zeros of certain harmonic polynomials, Proc. Amer. Math. Soc. 131 (2003), no. 2, 409-414. MR 1933331 (2003j:30015), https://doi.org/10.1090/S0002-9939-02-06476-6
  • [35] Avraham Klein and Oded Agam, Topological transitions in evaporating thin films, J. Phys. A 45 (2012), no. 35, 355003, 14. MR 2969114, https://doi.org/10.1088/1751-8113/45/35/355003
  • [36] I. K. Kostov, I. Krichever, M. Mineev-Weinstein, P. B. Wiegmann, and A. Zabrodin, The $ \tau $-function for analytic curves, Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 285-299. MR 1842792 (2002h:37145)
  • [37] S.-Y. Lee and N. Makarov, Sharpness of connectivity bounds for quadrature domains, available at arXiv:1411.3415.
  • [38] A. L. Levin, An example of a doubly connected domain which admits a quadrature identity, Proc. Amer. Math. Soc. 60 (1976), 163-168 (1977). MR 0419777 (54 #7795)
  • [39] C. Neumann, Über das logarithmische Potential einer gewissen Ovalfläche, Abh. der math.-phys. Klasse der Königl. Sächs. Gesellsch. der Wiss. zu Leibzig 59 (1907), 278-312.
  • [40] C. Neumann, Über das logarithmische Potential einer gewissen Ovalfläche, Zweite Mitteilung 60 (1908), 53-56. Dritte Mitteilung, 240-247.
  • [41] P. Ya. Polubarinova-Kochina, On a problem of the motion of the contour of a petroleum shell, Dokl. Akad. Nauk USSR 47 (1945), 254-257. (in Russian).
  • [42] P. J. Poloubarinova-Kochina, Concerning unsteady motions in the theory of filtration, Appl. Math. Mech. [Akad. Nauk SSSR. Prikl. Mat. Mech.] 9 (1945), 79-90 (Russian., with English summary). MR 0013009 (7,95d)
  • [43] Mihai Putinar, On a class of finitely determined planar domains, Math. Res. Lett. 1 (1994), no. 3, 389-398. MR 1302653 (95k:30080), https://doi.org/10.4310/MRL.1994.v1.n3.a10
  • [44] Mihai Putinar, Extremal solutions of the two-dimensional $ L$-problem of moments, J. Funct. Anal. 136 (1996), no. 2, 331-364. MR 1380658 (97c:47018), https://doi.org/10.1006/jfan.1996.0033
  • [45] S. H. Rhie, $ n$-point gravitational lenses with $ 5(n-1)$ images, available at arXiv:astro-ph/0305166.
  • [46] S. Richardson, Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel, J. Fluid Mech. 56 (1972), no. 2, 609-618.
  • [47] Henrik Shahgholian, On quadrature domains and the Schwarz potential, J. Math. Anal. Appl. 171 (1992), no. 1, 61-78. MR 1192493 (93m:31006), https://doi.org/10.1016/0022-247X(92)90376-O
  • [48] Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778 (99h:31001)
  • [49] Makoto Sakai, On basic domains of extremal functions, Kōdai Math. Sem. Rep. 24 (1972), 251-258. MR 0320299 (47 #8838)
  • [50] Makoto Sakai, Analytic functions with finite Dirichlet integrals on Riemann surfaces, Acta Math. 142 (1979), no. 3-4, 199-220. MR 521461 (80d:30042), https://doi.org/10.1007/BF02395061
  • [51] Makoto Sakai, The sub-mean-value property of subharmonic functions and its application to the estimation of the Gaussian curvature of the span metric, Hiroshima Math. J. 9 (1979), no. 3, 555-593. MR 549663 (83a:31001)
  • [52] Makoto Sakai, Quadrature domains, Lecture Notes in Mathematics, vol. 934, Springer-Verlag, Berlin-New York, 1982. MR 663007 (84h:41047)
  • [53] Makoto Sakai, A moment problem on Jordan domains, Proc. Amer. Math. Soc. 70 (1978), no. 1, 35-38. MR 0470216 (57 #9974)
  • [54] Makoto Sakai, Applications of variational inequalities to the existence theorem on quadrature domains, Trans. Amer. Math. Soc. 276 (1983), no. 1, 267-279. MR 684507 (84i:31001), https://doi.org/10.2307/1999431
  • [55] Makoto Sakai, Null quadrature domains, J. Anal. Math. 40 (1981), 144-154 (1982). MR 659788 (84e:30069), https://doi.org/10.1007/BF02790159
  • [56] Makoto Sakai, Domains having null complex moments, Complex Var. Theory Appl. 7 (1987), no. 4, 313-319. MR 889117 (88e:31002)
  • [57] Makoto Sakai, Regularity of a boundary having a Schwarz function, Acta Math. 166 (1991), no. 3-4, 263-297. MR 1097025 (92c:30042), https://doi.org/10.1007/BF02398888
  • [58] Makoto Sakai, Small modifications of quadrature domains, Mem. Amer. Math. Soc. 206 (2010), no. 969, vi+269. MR 2667421 (2011j:30011), https://doi.org/10.1090/S0065-9266-10-00596-X
  • [59] Harold S. Shapiro, The Schwarz function and its generalization to higher dimensions, University of Arkansas Lecture Notes in the Mathematical Sciences, 9, John Wiley & Sons, Inc., New York, 1992. A Wiley-Interscience Publication. MR 1160990 (93g:30059)
  • [60] T. Sheil-Small, Complex polynomials, Cambridge Studies in Advanced Mathematics, vol. 75, Cambridge University Press, Cambridge, 2002. MR 1962935 (2004b:30001)
  • [61] P. Wiegmann and A. Zabrodin, Large scale correlations in normal non-Hermitian matrix ensembles, J. Phys. A 36 (2003), no. 12, 3411-3424. Random matrix theory. MR 1986427 (2004h:82054), https://doi.org/10.1088/0305-4470/36/12/332
  • [62] Paul B. Wiegmann, Aharonov-Bohm effect in the quantum Hall regime and Laplacian growth problems, Statistical field theories (Como, 2001) NATO Sci. Ser. II Math. Phys. Chem., vol. 73, Kluwer Acad. Publ., Dordrecht, 2002, pp. 337-349. MR 2011014
  • [63] George Wilson, Hilbert's sixteenth problem, Topology 17 (1978), no. 1, 53-73. MR 0498591 (58 #16684)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 30C99, 30E05, 30E99, 30D05, 31A99, 76D27, 30C62

Retrieve articles in all journals with MSC (2010): 30C99, 30E05, 30E99, 30D05, 31A99, 76D27, 30C62


Additional Information

Seung-Yeop Lee
Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
Email: duxlee@caltech.edu

Nikolai G. Makarov
Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125
Email: makarov@caltech.edu

DOI: https://doi.org/10.1090/jams828
Received by editor(s): July 15, 2013
Received by editor(s) in revised form: November 13, 2014
Published electronically: May 11, 2015
Additional Notes: The first author was supported by Sherman Fairchild Senior Research Fellowship.
The second author was supported by NSF grant no. 1101735.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society