Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

A proof of the Howe duality conjecture


Authors: Wee Teck Gan and Shuichiro Takeda
Journal: J. Amer. Math. Soc. 29 (2016), 473-493
MSC (2010): Primary 11F27; Secondary 22E50
DOI: https://doi.org/10.1090/jams/839
Published electronically: July 13, 2015
Previous version: Original version posted July 13, 2015
Corrected version: Current version corrects publisher's error which provided incorrect information for bibliographic reference [GT].
MathSciNet review: 3454380
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a proof of the Howe duality conjecture in the theory of local theta correspondence for symplectic-orthogonal or unitary dual pairs in arbitrary residual characteristic.


References [Enhancements On Off] (What's this?)

  • [GI] Wee Teck Gan and Atsushi Ichino, Formal degrees and local theta correspondence, Invent. Math. 195 (2014), no. 3, 509-672. MR 3166215, https://doi.org/10.1007/s00222-013-0460-5
  • [GS] Wee Teck Gan and Gordan Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), no. 6, 1655-1694. MR 2999299, https://doi.org/10.1112/S0010437X12000486
  • [GT] W. T. Gan and S. Takeda, The Howe duality conjecture in classical theta correspondence, to appear in Contemporary Math., volume in honor of J. Cogdell (2014), arXiv:1405.2626.
  • [H1] R. Howe, $ \theta $-series and invariant theory, Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 275-285. MR 546602 (81f:22034)
  • [H2] Roger Howe, Transcending classical invariant theory, J. Amer. Math. Soc. 2 (1989), no. 3, 535-552. MR 985172 (90k:22016), https://doi.org/10.2307/1990942
  • [Han] M. Hanzer, Inducirane reprezentacije hermitskih kvaternionskih grupa. Ph.D. Thesis (2005), University of Zagreb.
  • [HM] Marcela Hanzer and Goran Muić, Parabolic induction and Jacquet functors for metaplectic groups, J. Algebra 323 (2010), no. 1, 241-260. MR 2564837 (2011b:22026), https://doi.org/10.1016/j.jalgebra.2009.07.001
  • [K1] Stephen S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), no. 2, 229-255. MR 818351 (87e:22037), https://doi.org/10.1007/BF01388961
  • [K2] Stephen S. Kudla, Splitting metaplectic covers of dual reductive pairs, Israel J. Math. 87 (1994), no. 1-3, 361-401. MR 1286835 (95h:22019), https://doi.org/10.1007/BF02773003
  • [KR] Stephen S. Kudla and Stephen Rallis, On first occurrence in the local theta correspondence, Automorphic representations, $ L$-functions and applications: progress and prospects, Ohio State Univ. Math. Res. Inst. Publ., vol. 11, de Gruyter, Berlin, 2005, pp. 273-308. MR 2192827 (2007d:22028), https://doi.org/10.1515/9783110892703.273
  • [LST] Jian-Shu Li, Binyong Sun, and Ye Tian, The multiplicity one conjecture for local theta correspondences, Invent. Math. 184 (2011), no. 1, 117-124. MR 2782253 (2012b:22023), https://doi.org/10.1007/s00222-010-0287-2
  • [LnST] Yanan Lin, Binyong Sun, and Shaobin Tan, MVW-extensions of quaternionic classical groups, Math. Z. 277 (2014), no. 1-2, 81-89. MR 3205764, https://doi.org/10.1007/s00209-013-1246-6
  • [M] Alberto Mínguez, Correspondance de Howe explicite: paires duales de type II, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 5, 717-741 (French, with English and French summaries). MR 2504432 (2010h:22024)
  • [MVW] Colette Mœglin, Marie-France Vignéras, and Jean-Loup Waldspurger, Correspondances de Howe sur un corps $ p$-adique, Lecture Notes in Mathematics, vol. 1291, Springer-Verlag, Berlin, 1987 (French). MR 1041060 (91f:11040)
  • [M1] Goran Muić, Howe correspondence for discrete series representations; the case of $ ({\rm Sp}(n),{\rm O}(V))$, J. Reine Angew. Math. 567 (2004), 99-150. MR 2038306 (2005a:22013), https://doi.org/10.1515/crll.2004.014
  • [M2] Goran Muić, On the structure of the full lift for the Howe correspondence of $ ({\rm Sp}(n),{\rm O}(V))$ for rank-one reducibilities, Canad. Math. Bull. 49 (2006), no. 4, 578-591. MR 2269768 (2007j:22021), https://doi.org/10.4153/CMB-2006-054-3
  • [M3] Goran Muić, On the structure of theta lifts of discrete series for dual pairs $ ({\rm Sp}(n),{\rm O}(V))$, Israel J. Math. 164 (2008), 87-124. MR 2391142 (2009c:22017), https://doi.org/10.1007/s11856-008-0022-5
  • [M4] Goran Muić, Theta lifts of tempered representations for dual pairs $ ({\rm Sp}_{2n},{\rm O}(V))$, Canad. J. Math. 60 (2008), no. 6, 1306-1335. MR 2462449 (2010a:22025), https://doi.org/10.4153/CJM-2008-056-6
  • [T] Marko Tadić, Structure arising from induction and Jacquet modules of representations of classical $ p$-adic groups, J. Algebra 177 (1995), no. 1, 1-33. MR 1356358 (97b:22023), https://doi.org/10.1006/jabr.1995.1284
  • [W] J.-L. Waldspurger, Démonstration d'une conjecture de dualité de Howe dans le cas $ p$-adique, $ p\neq 2$, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 2, Weizmann, Jerusalem, 1990, pp. 267-324 (French). MR 1159105 (93h:22035)
  • [Z] A. V. Zelevinsky, Induced representations of reductive $ {\mathfrak{p}}$-adic groups. II. On irreducible representations of $ {\rm GL}(n)$, Ann. Sci. Éc. Norm. Supér. (4) 13 (1980), no. 2, 165-210. MR 584084 (83g:22012)

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 11F27, 22E50

Retrieve articles in all journals with MSC (2010): 11F27, 22E50


Additional Information

Wee Teck Gan
Affiliation: Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
Email: matgwt@nus.edu.sg

Shuichiro Takeda
Affiliation: Mathematics Department, University of Missouri, 202 Math Sciences Building, Columbia, Missouri 65211
Email: takedas@missouri.edu

DOI: https://doi.org/10.1090/jams/839
Received by editor(s): July 9, 2014
Received by editor(s) in revised form: July 27, 2014, and March 4, 2015
Published electronically: July 13, 2015
Additional Notes: The first author is partially supported by an MOE Tier 1 Grant R-146-000-155-112 and an MOE Tier Two Grant R-146-000-175-112.
The second author is partially supported by NSF grant DMS-1215419.
Dedicated: to Professor Roger Howe who started it all on the occasion of his 70th birthday
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society