Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

Request Permissions   Purchase Content 
 
 

 

The weakly nonlinear large-box limit of the 2D cubic nonlinear Schrödinger equation


Authors: Erwan Faou, Pierre Germain and Zaher Hani
Journal: J. Amer. Math. Soc. 29 (2016), 915-982
MSC (2010): Primary 35Q55, 37K05
DOI: https://doi.org/10.1090/jams/845
Published electronically: October 20, 2015
MathSciNet review: 3522607
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the cubic nonlinear Schrödinger (NLS) equation set on a two-dimensional box of size $ L$ with periodic boundary conditions. By taking the large-box limit $ L \to \infty $ in the weakly nonlinear regime (characterized by smallness in the critical space), we derive a new equation set on $ \mathbb{R}^2$ that approximates the dynamics of the frequency modes. The large-box limit and the weak nonlinearity limit are also performed in weak (or wave) turbulence theory, to which this work is related. This nonlinear equation turns out to be Hamiltonian and enjoys interesting symmetries, such as its invariance under the Fourier transform, as well as several families of explicit solutions. A large part of this work is devoted to a rigorous approximation result that allows one to project the long-time dynamics of the limit equation into that of the cubic NLS equation on a box of finite size.


References [Enhancements On Off] (What's this?)

  • [1] V. I. Arnold, Mathematical Methods of Classical Mechanics, 2nd ed., Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989. Translated from the Russian by K. Vogtmann and A. Weinstein. MR 997295 (90c:58046)
  • [2] Jonathan Bennett, Neal Bez, Anthony Carbery, and Dirk Hundertmark, Heat-flow monotonicity of Strichartz norms, Anal. PDE 2 (2009), no. 2, 147-158. MR 2547132 (2010j:35418), https://doi.org/10.2140/apde.2009.2.147
  • [3] Jonathan Bennett, Anthony Carbery, and James Wright, A non-linear generalisation of the Loomis-Whitney inequality and applications, Math. Res. Lett. 12 (2005), no. 4, 443-457. MR 2155223 (2006m:26039), https://doi.org/10.4310/MRL.2005.v12.n4.a1
  • [4] Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008), no. 5, 1343-1415. MR 2377493 (2009c:42052), https://doi.org/10.1007/s00039-007-0619-6
  • [5] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal. 3 (1993), no. 2, 107-156. MR 1209299 (95d:35160a), https://doi.org/10.1007/BF01896020
  • [6] Jean Bourgain, Invariant measures for the $ 2$D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys. 176 (1996), no. 2, 421-445. MR 1374420 (96m:35292)
  • [7] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations, Ann. of Math. (2) 148 (1998), no. 2, 363-439. MR 1668547 (2000b:37087), https://doi.org/10.2307/121001
  • [8] J. Bourgain, On Strichartz's inequalities and the nonlinear Schrödinger equation on irrational tori, Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 1-20. MR 2331676 (2008j:35165)
  • [9] Herm Jan Brascamp and Elliott H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no. 2, 151-173. MR 0412366 (54 #492)
  • [10] David Cai, Andrew J. Majda, David W. McLaughlin, and Esteban G. Tabak, Dispersive wave turbulence in one dimension, Phys. D 152/153 (2001), 551-572. Advances in nonlinear mathematics and science. MR 1837929 (2002k:76069), https://doi.org/10.1016/S0167-2789(01)00193-2
  • [11] E. A. Carlen, E. H. Lieb, and M. Loss, A sharp analog of Young's inequality on $ S^N$ and related entropy inequalities, J. Geom. Anal. 14 (2004), no. 3, 487-520. MR 2077162 (2005k:82046), https://doi.org/10.1007/BF02922101
  • [12] Rémi Carles and Erwan Faou, Energy cascades for NLS on the torus, Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2063-2077. MR 2885798 (2012m:35305), https://doi.org/10.3934/dcds.2012.32.2063
  • [13] Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $ H^s$, Nonlinear Anal. 14 (1990), no. 10, 807-836. MR 1055532 (91j:35252), https://doi.org/10.1016/0362-546X(90)90023-A
  • [14] Thierry Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. MR 2002047 (2004j:35266)
  • [15] R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9) 72 (1993), no. 3, 247-286 (English, with English and French summaries). MR 1225511 (95d:46033)
  • [16] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math. 181 (2010), no. 1, 39-113. MR 2651381 (2011f:35320), https://doi.org/10.1007/s00222-010-0242-2
  • [17] C. Connaughton, S. Nazarenko, and A. Pushkarev, Discreteness and quasiresonances in weak turbulence of capillary waves, Phys. Rev. E 63 (2001), 046306.
  • [18] P. Denissenko, S. Lukaschuk, and S. Nazarenko, Gravity wave turbulence in a laboratory flume, Phys. Rev. Lett. 99 (2007), 014501.
  • [19] Benjamin Dodson, Global well-posedness and scattering for the defocusing, $ L^{2}$-critical nonlinear Schrödinger equation when $ d\geq 3$, J. Amer. Math. Soc. 25 (2012), no. 2, 429-463. MR 2869023, https://doi.org/10.1090/S0894-0347-2011-00727-3
  • [20] B. Dodson, Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, available at arXiv:1104.1114.
  • [21] L. Hakan Eliasson and Sergei B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. of Math. (2) 172 (2010), no. 1, 371-435. MR 2680422 (2011g:37203), https://doi.org/10.4007/annals.2010.172.371
  • [22] Erwan Faou, Ludwig Gauckler, and Christian Lubich, Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus, Comm. Partial Differential Equations 38 (2013), no. 7, 1123-1140. MR 3169740, https://doi.org/10.1080/03605302.2013.785562
  • [23] Damiano Foschi, Maximizers for the Strichartz inequality, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 739-774. MR 2341830 (2008k:35389), https://doi.org/10.4171/JEMS/95
  • [24] Jiansheng Geng, Xindong Xu, and Jiangong You, An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation, Adv. Math. 226 (2011), no. 6, 5361-5402. MR 2775905 (2012k:37159), https://doi.org/10.1016/j.aim.2011.01.013
  • [25] Patrick Gérard and Sandrine Grellier, The cubic Szegő equation, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), no. 5, 761-810 (English, with English and French summaries). MR 2721876 (2012b:37188)
  • [26] Patrick Gérard and Sandrine Grellier, Invariant tori for the cubic Szegö equation, Invent. Math. 187 (2012), no. 3, 707-754. MR 2944951
  • [27] Patrick Gérard and Sandrine Grellier, Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDE 5 (2012), no. 5, 1139-1155. MR 3022852, https://doi.org/10.2140/apde.2012.5.1139
  • [28] P. Germain, Z. Hani, and L. Thomann, On the continuous resonant equation for NLS. I. Deterministic analysis, available at arXiv:1501.03760. To appear in J. Math. Pures Appl. (9).
  • [29] P. Germain, Z. Hani, and L. Thomann, On the continuous resonant equation for NLS. II. Statistical study, available at arXiv:1502.05643. To appear in Anal. PDE.
  • [30] M. Guardia and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 1, 71-149. MR 3312404, https://doi.org/10.4171/JEMS/499
  • [31] Zaher Hani, Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 211 (2014), no. 3, 929-964. MR 3158811, https://doi.org/10.1007/s00205-013-0689-6
  • [32] Zaher Hani and Benoit Pausader, On scattering for the quintic defocusing nonlinear Schrödinger equation on $ \mathbb{R}\times \mathbb{T}^2$, Comm. Pure Appl. Math. 67 (2014), no. 9, 1466-1542. MR 3245101, https://doi.org/10.1002/cpa.21481
  • [33] Z. Hani and L. Thomann, Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping, available at arXiv:1408.6213. To appear in Comm. Pure Appl. Math.
  • [34] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243 (2009i:11001)
  • [35] K. Hasselmann, On the non-linear energy transfer in a gravity-wave spectrum. I. General theory, J. Fluid Mech. 12 (1962), 481-500. MR 0136205 (24 #B2243)
  • [36] K. Hasselmann, On the non-linear energy transfer in a gravity wave spectrum. II. Conservation theorems; wave-particle analogy; irreversibility, J. Fluid Mech. 15 (1963), 273-281. MR 0151308 (27 #1294)
  • [37] Dirk Hundertmark and Vadim Zharnitsky, On sharp Strichartz inequalities in low dimensions, Int. Math. Res. Not. IMRN , posted on (2006), Art. ID 34080, 18. MR 2219206 (2007b:35277), https://doi.org/10.1155/IMRN/2006/34080
  • [38] Vojtěch Jarník, Über die Gitterpunkte auf konvexen Kurven, Math. Z. 24 (1926), no. 1, 500-518 (German). MR 1544776, https://doi.org/10.1007/BF01216795
  • [39] E. Kartashova, Wave resonances in systems with discrete spectra, Nonlinear waves and weak turbulence, Amer. Math. Soc. Transl. Ser. 2, vol. 182, Amer. Math. Soc., Providence, RI, 1998, pp. 95-129. MR 1618507 (99c:35247)
  • [40] E. Kartashova, Exact and quasiresonances in discrete water wave turbulence, Phys. Rev. Lett. 98 (2007), 214502.
  • [41] Elena Kartashova, Sergey Nazarenko, and Oleksii Rudenko, Resonant interactions of nonlinear water waves in a finite basin, Phys. Rev. E 78 (2008), no. 1, 016304. MR 2496187 (2010d:76016), https://doi.org/10.1103/PhysRevE.78.016304
  • [42] E. Kartashova, Discrete wave turbulence, Europhys. Lett. 87 (2009), 44001.
  • [43] Elena Kartashova, Nonlinear resonance analysis, Cambridge University Press, Cambridge, 2011. Theory, computation, applications. MR 2752246 (2012e:37001)
  • [44] Rowan Killip, Terence Tao, and Monica Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 6, 1203-1258. MR 2557134 (2010m:35487), https://doi.org/10.4171/JEMS/180
  • [45] Nobu Kishimoto, Remark on the periodic in nonlinear Schrödinger equation, Proc. Amer. Math. Soc. 142 (2014), no. 8, 2649-2660. MR 3209321, https://doi.org/10.1090/S0002-9939-2014-12024-7
  • [46] Elliott H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), no. 1, 179-208. MR 1069246 (91i:42014), https://doi.org/10.1007/BF01233426
  • [47] Jani Lukkarinen and Herbert Spohn, Weakly nonlinear Schrödinger equation with random initial data, Invent. Math. 183 (2011), no. 1, 79-188. MR 2755061 (2011k:60219), https://doi.org/10.1007/s00222-010-0276-5
  • [48] V. S. L'vov and S. Nazarenko, Discrete and mesoscopic regimes of finite-size wave turbulence, Phys. Rev. E 82 (2010), 056322.
  • [49] A. J. Majda, D. W. McLaughlin, and E. G. Tabak, A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci. 7 (1997), no. 1, 9-44. MR 1431687 (97m:76071), https://doi.org/10.1007/BF02679124
  • [50] F. Merle and L. Vega, Compactness at blow-up time for $ L^2$ solutions of the critical nonlinear Schrödinger equation in 2D, Int. Math. Res. Not. IMRN 8 (1998), 399-425. MR 1628235 (99d:35156), https://doi.org/10.1155/S1073792898000270
  • [51] François Murat, Compacité par compensation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489-507 (French). MR 506997 (80h:46043a)
  • [52] Sergey Nazarenko, Wave turbulence, Lecture Notes in Physics, vol. 825, Springer, Heidelberg, 2011. MR 3014432
  • [53] S. Nazarenko, Sandpile behaviour in discrete water-wave turbulence, J. Stat. Mech. Theory Exp. 2006 (2006), L02002.
  • [54] R. Peierls, The kinetic theory of thermal conduction in crystals, Ann. Phys. 3 (1929), 1055-1101.
  • [55] Oana Pocovnicu, Traveling waves for the cubic Szegő equation on the real line, Anal. PDE 4 (2011), no. 3, 379-404. MR 2872121 (2012k:35521), https://doi.org/10.2140/apde.2011.4.379
  • [56] Oana Pocovnicu, Explicit formula for the solution of the Szegö equation on the real line and applications, Discrete Contin. Dyn. Syst. 31 (2011), no. 3, 607-649. MR 2825631 (2012h:35330), https://doi.org/10.3934/dcds.2011.31.607
  • [57] C. Procesi and M. Procesi, A KAM algorithm for the resonant non-linear Schrödinger equation, Adv. Math. 272 (2015), 399-470. MR 3303238, https://doi.org/10.1016/j.aim.2014.12.004
  • [58] Herbert Spohn, The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics, J. Stat. Phys. 124 (2006), no. 2-4, 1041-1104. MR 2264633 (2007g:82055), https://doi.org/10.1007/s10955-005-8088-5
  • [59] Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705-714. MR 0512086 (58 #23577)
  • [60] Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. Local and global analysis. MR 2233925 (2008i:35211)
  • [61] Terence Tao, Poincaré's legacies, pages from year two of a mathematical blog. Part I, American Mathematical Society, Providence, RI, 2009. MR 2523047 (2010h:00003)
  • [62] Mitsuhiro Tanaka and Naoto Yokoyama, Effects of discretization of the spectrum in water-wave turbulence, Fluid Dyn. Res. 34 (2004), no. 3, 199-216. MR 2034402, https://doi.org/10.1016/j.fluiddyn.2003.12.001
  • [63] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136-212. MR 584398 (81m:35014)
  • [64] Peter A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1975), 477-478. MR 0358216 (50 #10681)
  • [65] V. E. Zakharov and N. N. Filonenko, Energy spectrum for the stochastic oscillations of a fluid surface, Kohl. Acad. Nauk SSSR 170 (1966), 1292-1295. (translation: Sov. Phys. Dokl. 11, 881-884 (1967)).
  • [66] V. E. Zakharov and N. N. Filonenko, Weak turbulence of capillary waves, J. Applied Mech. Tech. Phys. 8 (1967), 37-40.
  • [67] V. E. Zakharov, V. L'vov, and G. Falkovich, Kolmogorov Spectra of Turbulence 1. Wave Turbulence, Springer, Berlin, 1992.
  • [68] Vladimir Zakharov, Frédéric Dias, and Andrei Pushkarev, One-dimensional wave turbulence, Phys. Rep. 398 (2004), no. 1, 1-65. MR 2073490 (2005f:76058), https://doi.org/10.1016/j.physrep.2004.04.002
  • [69] V. E. Zakharov, A. C. Korotkevich, and A. N. Pushkarev, Mesoscopic wave turbulence, JETP Lett. 82 (2005), 487-491.

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 35Q55, 37K05

Retrieve articles in all journals with MSC (2010): 35Q55, 37K05


Additional Information

Erwan Faou
Affiliation: INRIA & ENS Cachan Bretagne, Campus de Ker Lann, Avenue Robert Schumann, 35170 Bruz, France
Email: Erwan.Faou@inria.fr

Pierre Germain
Affiliation: Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, New York 10012-1185
Email: pgermain@cims.nyu.edu

Zaher Hani
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332
Email: hani@math.gatech.edu

DOI: https://doi.org/10.1090/jams/845
Received by editor(s): March 10, 2014
Received by editor(s) in revised form: July 21, 2015
Published electronically: October 20, 2015
Additional Notes: The first author was supported by the ERC Starting Grant project GEOPARDI
The second author was partially supported by NSF Grant DMS-1101269, a start-up grant from the Courant Institute, and a Sloan fellowship.
The third author was supported by a Simons Postdoctoral Fellowship and NSF Grant DMS-1301647.
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society