Remote Access Journal of the American Mathematical Society
Green Open Access

Journal of the American Mathematical Society

ISSN 1088-6834(online) ISSN 0894-0347(print)

 
 

 

Gromov-Witten/Pairs correspondence for the quintic 3-fold


Authors: R. Pandharipande and A. Pixton
Journal: J. Amer. Math. Soc. 30 (2017), 389-449
MSC (2010): Primary 14N35; Secondary 14H60
DOI: https://doi.org/10.1090/jams/858
Published electronically: March 17, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use the Gromov-Witten/Pairs (GW/P) descendent correspondence for toric 3-folds and degeneration arguments to establish the GW/P correspondence for several compact Calabi-Yau (CY) 3-folds (including all CY complete intersections in products of projective spaces). A crucial aspect of the proof is the study of the GW/P correspondence for descendents in relative geometries. Projective bundles over surfaces relative to a section play a special role. The GW/P correspondence for Calabi-Yau complete intersections provides a structure result for the Gromov-Witten invariants in a fixed curve class. After a change of variables, the Gromov-Witten series is a rational function in the variable $ -q=e^{iu}$ invariant under $ q \leftrightarrow q^{-1}$.


References [Enhancements On Off] (What's this?)

  • [1] Mina Aganagic, Albrecht Klemm, Marcos Mariño, and Cumrun Vafa, The topological vertex, Comm. Math. Phys. 254 (2005), no. 2, 425-478. MR 2117633, https://doi.org/10.1007/s00220-004-1162-z
  • [2] K. Behrend, Gromov-Witten invariants in algebraic geometry, Invent. Math. 127 (1997), no. 3, 601-617. MR 1431140, https://doi.org/10.1007/s002220050132
  • [3] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88. MR 1437495, https://doi.org/10.1007/s002220050136
  • [4] Tom Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), no. 4, 969-998. MR 2813335, https://doi.org/10.1090/S0894-0347-2011-00701-7
  • [5] J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves, J. Amer. Math. Soc. 21 (2008), 101-136.
  • [6] R. Gopakumar and C. Vafa, M-theory and topological strings I and II, available at arXiv:hep-th/9809187, arXiv:hep-th/9812127.
  • [7] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2, 487-518. MR 1666787, https://doi.org/10.1007/s002220050293
  • [8] Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451-510. MR 3011419, https://doi.org/10.1090/S0894-0347-2012-00757-7
  • [9] Eleny-Nicoleta Ionel and Thomas H. Parker, Relative Gromov-Witten invariants, Ann. of Math. (2) 157 (2003), no. 1, 45-96. MR 1954264, https://doi.org/10.4007/annals.2003.157.45
  • [10] E. Ionel and T. Parker, The Gopakumar-Vafa formula for symplectic manifolds, available at arXiv:1306.1516.
  • [11] A. Klemm and M. Mariño, Counting BPS states on the Enriques Calabi-Yau, available at arXiv:hep-th/0512227.
  • [12] An-Min Li and Yongbin Ruan, Symplectic surgery and Gromov-Witten invariants of Calabi-Yau 3-folds, Invent. Math. 145 (2001), no. 1, 151-218. MR 1839289, https://doi.org/10.1007/s002220100146
  • [13] Jun Li, A degeneration formula of GW-invariants, J. Differential Geom. 60 (2002), no. 2, 199-293. MR 1938113
  • [14] Jun Li and Gang Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119-174. MR 1467172, https://doi.org/10.1090/S0894-0347-98-00250-1
  • [15] Jun Li and Baosen Wu, Good degeneration of Quot-schemes and coherent systems, Comm. Anal. Geom. 23 (2015), no. 4, 841-921. MR 3385781
  • [16] Davesh Maulik, Gromov-Witten theory of $ \mathcal {A}_n$-resolutions, Geom. Topol. 13 (2009), no. 3, 1729-1773. MR 2496055, https://doi.org/10.2140/gt.2009.13.1729
  • [17] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263-1285. MR 2264664, https://doi.org/10.1112/S0010437X06002302
  • [18] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), no. 5, 1286-1304. MR 2264665, https://doi.org/10.1112/S0010437X06002314
  • [19] Davesh Maulik and Alexei Oblomkov, Quantum cohomology of the Hilbert scheme of points on $ \mathcal {A}_n$-resolutions, J. Amer. Math. Soc. 22 (2009), no. 4, 1055-1091. MR 2525779, https://doi.org/10.1090/S0894-0347-09-00632-8
  • [20] Davesh Maulik and Alexei Oblomkov, Donaldson-Thomas theory of $ {\mathcal {A}}_n\times P^1$, Compos. Math. 145 (2009), no. 5, 1249-1276. MR 2551996, https://doi.org/10.1112/S0010437X09003972
  • [21] D. Maulik, A. Oblomkov, A. Okounkov, and R. Pandharipande, Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds, Invent. Math. 186 (2011), no. 2, 435-479. MR 2845622, https://doi.org/10.1007/s00222-011-0322-y
  • [22] D. Maulik and R. Pandharipande, A topological view of Gromov-Witten theory, Topology 45 (2006), no. 5, 887-918. MR 2248516, https://doi.org/10.1016/j.top.2006.06.002
  • [23] D. Maulik and R. Pandharipande, New calculations in Gromov-Witten theory, Pure Appl. Math. Q. 4 (2008), no. 2, Special Issue: In honor of Fedor Bogomolov., 469-500. MR 2400883, https://doi.org/10.4310/PAMQ.2008.v4.n2.a7
  • [24] D. Maulik, R. Pandharipande, and R. P. Thomas, Curves on $ K3$ surfaces and modular forms, J. Topol. 3 (2010), no. 4, 937-996. With an appendix by A. Pixton. MR 2746343, https://doi.org/10.1112/jtopol/jtq030
  • [25] A. Oblomkov, A. Okounkov, and R. Pandharipande. In preparation.
  • [26] A. Okounkov and R. Pandharipande, Gromov-Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. (2) 163 (2006), no. 2, 517-560. MR 2199225, https://doi.org/10.4007/annals.2006.163.517
  • [27] A. Okounkov and R. Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006), no. 1, 47-108. MR 2208418, https://doi.org/10.1007/s00222-005-0455-y
  • [28] A. Okounkov and R. Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane, Invent. Math. 179 (2010), no. 3, 523-557. MR 2587340, https://doi.org/10.1007/s00222-009-0223-5
  • [29] A. Okounkov and R. Pandharipande, The local Donaldson-Thomas theory of curves, Geom. Topol. 14 (2010), no. 3, 1503-1567. MR 2679579, https://doi.org/10.2140/gt.2010.14.1503
  • [30] R. Pandharipande and A. Pixton, Descendents on local curves: rationality, Compos. Math. 149 (2013), no. 1, 81-124. MR 3011879, https://doi.org/10.1112/S0010437X12000498
  • [31] Rahul Pandharipande and Aaron Pixton, Descendent theory for stable pairs on toric 3-folds, J. Math. Soc. Japan 65 (2013), no. 4, 1337-1372. MR 3127827, https://doi.org/10.2969/jmsj/06541337
  • [32] R. Pandharipande and A. Pixton, Descendents on local curves: stationary theory, Geometry and arithmetic, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, pp. 283-307. MR 2987666, https://doi.org/10.4171/119-1/17
  • [33] Rahul Pandharipande and Aaron Pixton, Gromov-Witten/pairs descendent correspondence for toric 3-folds, Geom. Topol. 18 (2014), no. 5, 2747-2821. MR 3285224, https://doi.org/10.2140/gt.2014.18.2747
  • [34] R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407-447. MR 2545686, https://doi.org/10.1007/s00222-009-0203-9
  • [35] Rahul Pandharipande and Richard P. Thomas, The 3-fold vertex via stable pairs, Geom. Topol. 13 (2009), no. 4, 1835-1876. MR 2497313, https://doi.org/10.2140/gt.2009.13.1835
  • [36] R. Pandharipande and R. P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010), no. 1, 267-297. MR 2552254, https://doi.org/10.1090/S0894-0347-09-00646-8
  • [37] R. Pandharipande and R. P. Thomas, The Katz-Klemm-Vafa conjecture for $ K3$ surfaces, available at arXiv:1407.3181.
  • [38] R. Pandharipande and R. P. Thomas, 13/2 ways of counting curves, Moduli spaces, London Math. Soc. Lecture Note Ser., vol. 411, Cambridge Univ. Press, Cambridge, 2014, pp. 282-333. MR 3221298
  • [39] Iman Setayesh, Relative Hilbert scheme of points, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)-Princeton University. MR 2912104
  • [40] Yukinobu Toda, Curve counting theories via stable objects I. DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), no. 4, 1119-1157. MR 2669709, https://doi.org/10.1090/S0894-0347-10-00670-3

Similar Articles

Retrieve articles in Journal of the American Mathematical Society with MSC (2010): 14N35, 14H60

Retrieve articles in all journals with MSC (2010): 14N35, 14H60


Additional Information

R. Pandharipande
Affiliation: Departement Mathematik, ETH Zürich, Zürich, Switzerland
Email: rahul@math.ethz.ch

A. Pixton
Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
Address at time of publication: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Email: apixton@mit.edu

DOI: https://doi.org/10.1090/jams/858
Received by editor(s): August 25, 2014
Received by editor(s) in revised form: January 23, 2016, and February 7, 2016
Published electronically: March 17, 2016
Additional Notes: The first author was partially supported by NSF Grant DMS-1001154, SNF Grant 200021-143274, SNF Grant 200020-162928, SwissMAP, and ERC Grant AdG-320368-MCSK
The second author was supported by a NDSEG graduate fellowship.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society