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A PROOF OF THE SHUFFLE CONJECTURE

ERIK CARLSSON AND ANTON MELLIT

1. Introduction

The shuffle conjecture of Haglund, Haiman, Loehr, Remmel, and Ulyanov
[HHL`05b] predicts a combinatorial formula for the Frobenius character FRn

pX; q, tq
of the diagonal coinvariant algebra Rn in n pairs of variables, which is a symmetric
function in infinitely many variables with coefficients in Zě0rq, ts. By a result of
Haiman [Hai02], the Frobenius character is given explicitly by

FRn
pX; q, tq “ p´1q

n∇enrXs,

where, up to a sign convention, ∇ is the operator which is diagonal in the modified
Macdonald basis defined in [BGHT99]. The original shuffle conjecture states

(1.1) p´1q
n∇enrXs “

ÿ

π

ÿ

wPWPπ

tareapπqqdinvpπ,wqxw.

Here π is a Dyck path of length n, and w is some extra data called a “word
parking function” depending on π. The functions parea, dinvq are statistics as-
sociated to a Dyck path and a parking function, and xw is a monomial in the
variables x. It was shown in [HHL`05b] that this sum, denoted DnpX; q, tq, is
symmetric in the x variables, and so it does at least define a symmetric func-
tion. It was also shown there that the shuffle conjecture included many previous
conjectures and results about the q, t-Catalan numbers, and other special cases
[GH96,GH02,Hag03,EHKK03,Hag04]. Remarkably, DnpX; q, tq had not even been
proven to be symmetric in the q, t variables until now, even though the symmetry
of FRn

pX; q, tq is obvious. The name “shuffle conjecture” has to do with the fact
that the coefficient of mμ in equation (1.1) can be expressed in terms of parking
functions that are “μ-shuffles”. See Conjecture 6.1 of Haglund’s book [Hag08] for a
detailed explanation, and Chapter 6 in general for a thorough introduction to this
topic.

In [HMZ12] Haglund, Morse, and Zabrocki conjectured a refinement of the origi-
nal conjecture which partitions DnpX; q, tq by specifying the points where the Dyck
path touches the diagonal called the “compositional shuffle conjecture”. The refined
conjecture states

(1.2) ∇ pCαrX; qsq “

ÿ

touchpπq“α

ÿ

wPWPπ

tareapπqqdinvpπ,wqxw.

Received by the editors March 29, 2016, and, in revised form, August 29, 2017, and October 11,
2017.

2010 Mathematics Subject Classification. Primary 05E10; Secondary 05E05, 05A30, 33D52.

c©2017 American Mathematical Society

661

http://www.ams.org/jams/
http://www.ams.org/jams/
http://dx.doi.org/10.1090/jams/893


662 ERIK CARLSSON AND ANTON MELLIT

Here α is a composition, i.e., a finite list of positive integers specifying the gaps
between the touch points of π. The function CαrX; qs is defined below as a com-
position of creation operators for Hall–Littlewood polynomials in the variable 1{q.
They proved that

ÿ

|α|“n

CαrX; qs “ p´1q
nenrXs,

implying that (1.2) does indeed generalize (1.1). The right-hand side of (1.2) will
be denoted by DαpX; q, tq. A desirable approach to proving (1.2) would be to
determine a recursive formula for DαpX; q, tq and to interpret the result in terms of
some commutation relations for ∇. Indeed, this approach has been applied in some
important special cases; see [GH02,GXZ12,Hic12]. In [GXZ12], for instance, the
authors devise a recursive formula (Proposition 3.12) to prove the Catalan case of
the compositional conjecture, extending the results of [GH02]. Unfortunately, no
such recursion is known in the general case, and so an even more refined function
is needed.

In this paper, we will construct the desired refinement as an element of a larger
vector space Vk of symmetric functions over Qpq, tq with k additional variables yi
adjoined, where k is the length of the composition α,

Nα P Vk “ SymrXsry1, . . . , yks.

In our first result (Theorem 4.11) we will explain how to recover DαpX; q, tq from
Nα, which is defined by an explicit recursion. In fact, while they live in different
vector spaces, the recursions forNα are similar to the recursions for the Catalan case
in [GXZ12]. We make this connection precise in Proposition 4.14, which explains
how the latter formulas follow as a special case.

We then define a pair of algebras A and A˚ which are isomorphic by an antilin-
ear isomorphism with respect to the conjugation pq, tq Ñ pq´1, t´1q, as well as an
explicit action of each on the direct sum V˚ “

À

kě0 Vk. We will then prove that
there is an antilinear involution N on V˚ which intertwines the two actions (Theo-

rem 7.4) and represents an involutive automorphism on a larger algebra A,A˚ Ă Ã.
This turns out to be the essential fact that relates the Nα to ∇.

The compositional shuffle conjecture (Theorem 7.5) then follows as a simple
corollary from the following properties:

(i) There is a surjection coming from A,A˚

dk´ : Vk Ñ V0 “ SymrXs

which maps a monomial yα in the y variables to an element BαrX; qs which
is similar to CαrX; qs and maps Nα to DαpX; q, tq, up to a sign.

(ii) The involution N commutes with d´ and maps yα to Nα.
(iii) The restriction of N to V0 “ SymrXs agrees with ∇ composed with a

conjugation map which essentially exchanges the BαrX; qs and CαrX; qs.

It then becomes clear that these properties imply (1.2).
While the compositional shuffle conjecture is clearly our main application, the

shuffle conjecture has been further generalized in several remarkable directions such
as the rational compositional shuffle conjecture, and relationships to knot invariants,
double affine Hecke algebras, and the cohomology of the affine Springer fibers;
see [BGLX14, GORS14, GN15, Neg13, Hik14, SV11, SV13]. We hope that future
applications to these fascinating topics will be forthcoming.
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2. The compositional shuffle conjecture

2.1. Plethystic operators. A λ-ring is a ring R with a family of ring endomor-
phisms ppiqiPZą0

satisfying

p1rxs “ x, pmrpnrxss “ pmnrxs px P R, m, n P Zą0q.

Unless stated otherwise, the endomorphisms are defined by pnpxq “ xn for each
variable x such as q, t, u, v, z, xi, yi. The ring of symmetric functions over the λ-
ring Qpq, tq is a free λ-ring with generator X “ x1 `x2 ` ¨ ¨ ¨ , and it will be denoted
SymrXs. We will employ the standard notation used for plethystic substitution
defined as follows: given an element F P SymrXs and A in some λ-ring R, the
plethystic substitution F rAs is the image of the homomorphism from SymrXs Ñ R
defined by replacing pn by pnpAq. For instance, we would have

p1p2rX{p1 ´ qqs “ p1rXsp2rXsp1 ´ qq
´1

p1 ´ q2q
´1.

See [Hai01] for a reference.
The modified Macdonald polynomials [GHT99] will be denoted

H̃μ “ tnpμqJμrX{p1 ´ t´1
q; q, t´1

s P SymrXs,

where Jμ is the integral form of the Macdonald polynomial [Mac95], and

npμq “

ÿ

i

pi ´ 1qμi.

The operator ∇ : SymrXs Ñ SymrXs is defined by

(2.1) ∇H̃μ “ H̃μr´1sH̃μ “ p´1q
|μ|qnpμ1

qtnpμqH̃μ.

Note that our definition differs from the usual one from [BGHT99] by the sign
p´1q|μ|. We also have the sequences of operators Br, Cr : SymrXs Ñ SymrXs given
by the formulas

pBrF qrXs “ F rX ´ pq ´ 1qz´1
sExpr´zXs

ˇ

ˇ

zr ,

pCrF qrXs “ ´q1´rF rX ` pq´1
´ 1qz´1

sExprzXs
ˇ

ˇ

zr ,

where ExprXs “
ř8

n“0 hnrXs is the plethystic exponential and |zr denotes the
operation of taking the coefficient of zr of a Laurent power series. Our definition
again differs from the one in [HMZ12] by a factor p´1qr. For any composition α,
let Cα denote the composition Cα1

¨ ¨ ¨Cαl
, and similarly for Bα.

Finally, we denote by x ÞÑ x̄ the involutive automorphism of Qpq, tq obtained
by sending q, t to q´1, t´1. We denote by ω the λ-ring automorphism of SymrXs

obtained by sending X to ´X and by ω̄ its composition with ¯̊, i.e.,

pωF qrXs “ F r´Xs, pω̄F qrXs “ F̄ r´Xs.

2.2. Parking functions. We now recall the combinatorial background to state
the shuffle conjecture, for which we refer to Haglund’s book [Hag08]. We consider
the infinite grid on the top right quadrant of the plane. Its intersection points are
denoted as pi, jq with i, j P Z. For each cell of the grid, its coordinates pi, jq are
the coordinates of the top right corner. Thus i “ 1, 2, . . . indexes the columns and
j “ 1, 2, . . . indexes the rows. Let D be the set of Dyck paths of all lengths. A Dyck
path of length n is a grid path, from p0, 0q to pn, nq consisting of North and East
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steps, that stays above the main diagonal i “ j. For π P D denote by |π| its length
n. For π P D, let

areapπq :“ #Areapπq, Areapπq :“ tpi, jq : i ă j, pi, jq under πu .

This is the set of cells between the path and the diagonal. Let aj denote the
number of cells pi, jq P Areapπq in the row j. The area sequence is the sequence
apπq “ pa1, a2, . . . , anq, and we have areapπq “

řn
j“1 an.

Let px1, 1q, px2, 2q, . . . , pxn, nq be the cells immediately to the right of the North
steps. The sequence xpπq “ px1, x2, . . . , xnq is called the coarea sequence, and we
have aj ` xj “ j for all j.

We have the dinv statistic and the Dinv set defined by

dinvpπq :“ #Dinvpπq,

Dinvpπq :“ Dinv0pπq Y Dinv1pπq

“
�

pj, j1
q : 1 ď j ă j1

ď n, aj “ aj1
(

Y
�

pj, j1
q : 1 ď j1

ă j ď n, aj1 “ aj ` 1
(

.

For pj, j1q P Dinvpπq, we say that pxj , jq attacks pxj1 , j1q.
For any π, the set of word parking functions associated to π is defined by

WPπ :“ tw P Zn
ą0 : wj ą wj`1 whenever xj “ xj`1u .

In other words, the elements ofWPπ are n-tuples w of positive integers which, when
written from bottom to top to the right of each North step, are strictly decreasing
on cells such that one is on top of the other. For any w, let

dinvpπ,wq :“ #Dinvpπ,wq, Dinvpπ,wq :“
�

pj, j1
q P Dinvpπq : wj ą wj1

(

.

We note that both of these conditions differ from the usual notation in which
parking functions are expected to increase rather than decrease, and in which the
inequalities are reversed in the definition of dinv. This corresponds to choosing the
opposite total ordering on Zą0 everywhere, which does not affect the final answer
and is more convenient for the purposes of this paper.

Let us call α “ pα1, . . . , αkq “ touchpπq the touch composition of π if α1, . . . , αk

are the lengths of the gaps between the points where π touches the main diagonal

starting at the lower left. Equivalently,
řk

i“1 αi “ n and the numbers 1, 1 ` α1,
1`α1 `α2, . . . , 1`α1 ` ¨ ¨ ¨ `αk´1 are the positions of 0 in the area sequence apπq.

Example 2.1. Let π be the following Dyck path of length 8 described in Figure 1.
Then we have

Areapπq “ tp2, 3q, p2, 4q, p3, 4q, p3, 5q, p3, 6q, p4, 5q, p4, 6q, p5, 6q, p7, 8qu ,

Dinvpπq “ tp1, 2q, p1, 7q, p2, 7q, p3, 8q, p4, 5qu Y tp7, 3q, p8, 4q, p8, 5qu ,

touchpπq “ p1, 5, 2q, apπq “ p0, 0, 1, 2, 2, 3, 0, 1q,

xpπq “ p1, 2, 2, 2, 3, 3, 7, 7q

whence areapπq “ 9, dinvpπq “ 5 ` 3 “ 8. The labels shown above correspond to
the vector w “ p9, 5, 2, 1, 5, 2, 3, 2q, which we can see is an element of WPπ because
we have 5 ą 2 ą 1, 5 ą 2, 3 ą 2. We then have

Dinvpπ,wq “ tp1, 2q, p1, 7q, p2, 7qu Y tp7, 3q, p8, 4qu ,

giving dinvpπ,wq “ 5.
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Figure 1. Example of a Dyck path of size 8.

2.3. The shuffle conjectures. For any infinite set of variables X “ tx1, x2, . . .u,
let xw “ xw1

¨ ¨ ¨xwn
. In this notation, the original shuffle conjecture [HHL`05b]

states

Conjecture ([HHL`05b]). We have

p´1q
n∇en “

ÿ

|π|“n

tareapπq
ÿ

wPWPπ

qdinvpπ,wqxw.

In particular, the right-hand side is symmetric in the xi, and in q, t.

The stronger compositional shuffle conjecture [HMZ12] states

Conjecture ([HMZ12]). For any composition α, we have

(2.2) p´1q
n∇Cαp1q “

ÿ

touchpπq“α

tareapπq
ÿ

wPWPπ

qdinvpπ,wqxw.

2.4. From parea, dinvq to pbounce, area1q. In this paper, we will prove an equiva-
lent version of this conjecture, as obtained in [LN14, Theorem 14], by applying the
parea, dinvq to pbounce, area1q bijection from [HL05] and [Hag08]. We include our
construction of this bijection because it seems to be different from the original one,
and to demonstrate that it comes naturally from analysis of the attack relation.
An important property of our construction is that it comes with a natural lift from
Dyck paths to parking functions.

From any pair π P D, w P WPπ we will obtain a pair π1 P D, w1 P WP 1
π1 by

a procedure described below. After the end of this section we will only work with
π1, w1, so we will drop the apostrophe.

The Dyck path w1 is obtained as follows: sort the cells pxj , jq in the reading
order, i.e., in increasing order by the corresponding labels aj , using the row index
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Figure 2. Image of the path from Figure 1 under the parea, dinvq

to pbounce, area1q bijection.

j to break ties. Equivalently, we read the cells by diagonals from bottom to top,
and from left to right in each diagonal. For instance, for the path π from Example
2.1, the list would be

(2.3) tp1, 1q, p2, 2q, p7, 7q, p2, 3q, p7, 8q, p2, 4q, p3, 5q, p3, 6qu .

Let σj be the position of the cell pxj , jq in this list. This defines a permutation
σ P Sn. In the example case, we would get

σ “

ˆ

1 2 3 4 5 6 7 8
1 2 4 6 7 8 3 5

˙

.

Now we observe that for each j “ 1, . . . , n, the cell pxj , jq attacks all the subsequent
cells in the reading order whose position is before the position where we would place
pxj , j ` 1q if it were an element of the list.

More precisely, there is a unique Dyck path π1 for which

Areapπ1
q “ σpDinvpπqq “

�

pσj , σj1 q : pj, j1
q P Dinvpπq

(

.

The map π Ñ π1 is the desired bijection. To see the bijectivity one can either use
[Hag08] or see Remark 2.3.

If π is the Dyck path from our example, then π1 would be given by the path in
Figure 2.

The above statistics can be translated into new statistics under this bijection.
First, it is clear from the construction that dinvpπq “ areapπ1q. We next explain
how to calculate areapπq from π1. For any path, we obtain a new Dyck path called
the “bounce path” as follows: Start at the origin p0, 0q, and begin moving North
until contact is made with the first East step of π. Then start moving East until
contacting the diagonal. Then move North until contacting the path again, and so
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Figure 3. The bounce path of the path in Figure 2.

on. Note that contacting the path means running into the left endpoint of an East
step, but passing by the rightmost endpoint does not count, as illustrated below.
The bounce path splits the main diagonal into the bounce blocks. We number the
bounce blocks starting from 0 and define the bounce sequence bpπq “ pb1, b2, . . . , bnq

in such a way that for any i the cell pi, iq belongs to the bith block. We then define

bouncepπ1
q :“

n
ÿ

i“1

bi.

Another way to describe this construction is to say that b1 “ 0, bi`1 P tbi, bi ` 1u

and if i, i1 are the smallest indices for which bi “ c and bi1 “ c ` 1 for some c, then
i1 is the smallest index with i1 ą i such that pi, i1q R Areapπ1q. This description and
Areapπ1q “ σpDinvpπqq implies bσi

“ ai, hence bouncepπ1q “ areapπq; see [Hag08]
for an alternative treatment.

For the path π1 above, the bounce path is shown in Figure 3 with the original
path in gray. The bounce sequence is given by the numbers written under the
diagonal. We have

bpπ1
q “ p0, 0, 0, 1, 1, 2, 2, 3q, bouncepπ1

q “ 9 “ areapπq.

Next, we show how to reconstruct touchpπq from π1. For any path π1 of length
n, let l be the number of North steps from p0, 0q until the first East step, which is
the same as the length of the first bounce block. Let π̃ be the part of the path such
that π1 “ N lEπ̃, the result of beginning with l North steps starting at the origin,
followed by an East step, followed by the contents of π̃. Define numbers ti by

ti :“ bounce
`

N i`1EN l´iEπ̃
˘

, 0 ď i ď l.
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Note that the path N i`1EN l´iEπ̃ has length n ` 1 for each i, and we have t0 “

n ` bouncepπ1q and the ti go down to tl “ bouncepπ1q. Define

touch1
pπ1

q :“ pt0 ´ t1, . . . , tl´1 ´ tlq.

Proposition 2.2. For every Dyck path π

touch1
pπ1

q “ touchpπq.

For instance, in the example above we would have l “ 3,

pt0, t1, t2, t3q “ p17, 16, 11, 9q, touch1
pπ1

q “ touchpπq “ p1, 5, 2q.

Proof. Consider the ith touch point px, xq of π (we count the touch points starting
from 0, i.e., p0, 0q is the 0th touch point.) It splits π into two parts: π1 followed by
π2. Construct a new path π̂ of length n ` 1 by taking a step North, then following
a translated copy of π2, then taking a step East, then following a translated copy
of π1. The new path has length n ` 1, and its area is bigger than the area of π by
n ´ x. The (area,dinv) to (bounce,area1) map applied to π̂ gives precisely the path
N i`1EN l´iEπ̃. Thus we have

areapπ̂q “ bouncepN i`1EN l´iEπ̃q “ ti,

areapπ̂q “ n ´ x ` areapπq “ n ´ x ` bouncepπ1
q.

So the sizes of the gaps between the touch points of π are exactly the differences
ti´1 ´ ti. �

Remark 2.3. The construction we have used in the proof above can also be used to
prove the bijectivity of the (area,dinv) to (bounce,area1) map. Here is an idea of a
proof. First, every Dyck path arises as π̂ above for unique π and i. On the other
hand, every Dyck path can be uniquely written as N i`1EN l´iEπ̃. Thus, iterating
the construction, we obtain every Dyck path on each side of the (area,dinv) to
(bounce,area1) map in a unique way.

Having analyzed the statistics associated to a Dyck path, we turn to the analysis
of what happens to word parking functions. The dinv statistic is straightforward.
For any w1 P Zn

ą0, let

invpπ1, w1
q :“ #Invpπ1, w1

q, Invpπ1, w1
q :“

�

pi, jq P Areapπ1
q, w1

i ą w1
j

(

,

so that

Invpπ1, w1
q “ σ pDinvpπ,wqq , w1

σi
“ wi.

For the value of w from Example 2.1, we would have

w1
“ p9, 5, 3, 2, 2, 1, 5, 2q, Invpπ1, w1

q “ tp1, 2q, p1, 3q, p2, 3q, p3, 4q, p5, 6qu.

In particular, invpπ1, w1q “ dinvpπ,wq “ 5.
Finally, we reconstruct the word parking function condition. A cell pi, jq is

called a corner of π1 if it is above the path, but both its Southern and Eastern
neighbors are below the path. Denote the set of corners by cpπ1q. One can check
that the corners of π1 correspond to pairs of cells with one on top of the other in π.
For instance, from our example we have cpπ1q “ tp2, 4q, p3, 5q, p4, 6q, p7, 8qu. More
precisely, we have

cpπ1
q :“ tpσj , σj`1q : 1 ď j ă n, xj “ xj`1u.
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We therefore define

(2.4) WP 1
π1 :“

�

w1
P Zn

ą0 : w1
i ą w1

j for pi, jq P cpπ1
q
(

,

so that the condition w P WPπ is equivalent to w1 P WP 1
π1 .

Putting this together, we have

Proposition 2.4. For any composition α we have

(2.5) Dαpq, tq “

ÿ

touch1pπq“α

tbouncepπq
ÿ

wPWP1
π

qinvpπ,wqxw,

where Dαpq, tq is the right-hand side of (2.2).

3. Characteristic functions of Dyck paths

3.1. Simple characteristic function. We are going to study the summand in
Dαpq, tq as a function of π. It is convenient to first introduce a simpler object
where we drop the assumption w P WP 1

π and instead sum over all labelings. Given
a Dyck path of length n, define χpπq P SymrXs as follows:

Definition 3.1.

χpπq :“
ÿ

wPZn
ą0

qinvpπ,wqxw.

If i ă j and pi, jq is under π, i.e., pi, jq P Areapπq, we say that i and j attack
each other. It is not obvious from the definition that χpπq defines a symmetric
function. In fact, as we point out in Remark 3.6, χpπq is actually an example of an
LLT polynomial, but we present a proof in our setup here:

Proposition 3.2. The expression for χpπq above is symmetric in the variables
x1, x2, x3, . . ., so that Definition 3.1 correctly defines an element of SymrXs.

Proof. We take the main idea from the proof of Lemma 10.2 from [HHL05a]. First
note that for each n the correspondence π Ñ Areapπq is a bijection between the
set of Dyck paths of length n and the set of subsets R Ă tpj, j1q : 1 ď j ă j1 ď nu

satisfying the property

(*) if j ă j1
ă j2 and pj, j2

q P R, then both pj, j1
q and pj1, j2

q are in R.

In the proof we will work with R instead of π and write χpR, nq, invpR,wq instead
of χpπq, χpπ,wq. For each subset S Ă t1, 2, . . . , nu, S “ ts1 ă s2 ă ¨ ¨ ¨ ă s#Su, let
RS “ tpj, j1q : psj , sj1 q P Ru. Then RS again satisfies (*).

It is enough to show that χpR, nq is unaffected by interchange of xi and xi`1 for
any two neighboring indices i, i`1. For each subset S Ă t1, 2, . . . , nu and a function
f : t1, . . . , nu Ñ Zą0zti, i` 1u, let χS,f be the sub-sum of χpR, nq corresponding to
sequences w where the set of positions of i and i ` 1 in w is S, and the values of w
outside of S are given by f . It is enough to show that χS,f is symmetric in xi and
xi`1. We have

invpR,wq “ #tpj, j1
q P RS : wsj “ i ` 1, wsj1 “ iu ` invS,f ,

where invS,f depends only on S and f , but does not depend on the positions of i
or i ` 1 in S. Thus we have

χS,f “ χpRS ,#Sqpxi, xi`1q qinvS,f

ź

jRS

xfpjq,
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where

χpR, kqpx1, x2q “
ÿ

wPt1,2uk

qinvpR,wqxw.

So it is enough to show that χpR, kqpx1, x2q is symmetric in x1 and x2 for any
k, R satisfying (*). We proceed by induction on the size of R, the base case
#R “ 0 being trivial. Fix k and R ‰ ∅, and pick pa, bq P R maximal in the sense
that pa, jq R R for all j ą b and pj, bq R R for all j ă a. Then R1 “ Rztpa, bqu

satisfies (*). Consider the difference

χpR, kq ´ χpR1, kq “

ÿ

wPt1,2uk

pqinvpR,wq
´ qinvpR1,wq

qxw.

The coefficient pqinvpR,wq ´ qinvpR1,wqq is nonzero only if wa “ 2 and wb “ 1. If
this happens, then invpR,wq “ invpR1, wq ` 1. Consider contributions of pairs of
the form pa, jq, pb, jq, pj, aq, pj, bq to invpR1, wq. Since wa “ 2 pairs pj, aq do not
contribute anything, and pairs pa, jq contribute 1 precisely when a ă j ă b and
wj “ 1. Since wb “ 1 pairs pb, jq do not contribute, and pairs pj, bq contribute 1
precisely when a ă j ă b and wj “ 2. The net contribution is the number of j such
that a ă j ă b, which is b´a´1. We see that invpR1, wq “ b´a´1` invpR1

S , wSq,
where S “ t1, . . . , kuzta, bu, wS denotes the sequence w with the entries wa and wb

removed. Thus we obtain

χpR, kq ´ χpR1, kq “ pq ´ 1qx1x2χpR1
S , k ´ 2q.

By the induction hypothesis χpR1, kq and χpR1
S , k ´ 2q are symmetric in x1, x2.

Hence χpR, kq is also symmetric. �

Another way to formulate this property is as follows: For a composition c1 `

c2 ` ¨ ¨ ¨ ` ck “ n, consider the multiset Mc “ 1c12c2 ¨ ¨ ¨ kck . Consider the sum
ÿ

w a permutation of Mc

qinvpπ,wq.

Proposition 3.2 simply says that this sum does not depend on the order of the
numbers c1, c2, . . . , ck, or equivalently on the linear order on the set of labels. If λ is
the partition with components c1, c2, . . . , ck, then this sum computes the coefficient
of the monomial symmetric function mλ in χpπq, so we have (set hc “ hc1 ¨ ¨ ¨hck)

(3.1) pχpπq, hcq “

ÿ

w a permutation of Mc

qinvpπ,wq.

We list here a few properties of χ so that the reader has a feeling of what kind
of object it is.

For a Dyck path π denote by πop the reversed Dyck path, i.e., the path obtained
by replacing each North step by East step and each East step by North step and
reversing the order of steps. Reversing also the order of the components of c in
(3.1), we see

Proposition 3.3.

χpπq “ χpπop
q.

Proofs of the following two statements are essentially taken from [HHL05a].
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Proposition 3.4.

ω̄χpπq “ p´1q
|π|q´ areapπqχpπq.

Proposition 3.5.

χpπqrpq ´ 1qXs “ pq ´ 1q
|π|

ÿ

wPZ
|π|
ą0 no attack

qinvpπ,wqxw,

where “no attack” means that the summation is only over vectors w such that
wi ‰ wj for pi, jq P Areapπq.

Proofs. We follow Chapter 4 of [HHL05a]. For an integer n and a subset D Ă

t1, . . . , n ´ 1u, Gessel’s quasi-symmetric function Qn,D in x “ px1, x2, . . .q is given
by

Qn,Dpxq “

ÿ

w1ď¨¨¨ďwn
wi“wi`1ñiRD

xw.

For each sequence w P Zn
ą0, its standardization is the unique permutation Stdpwq P

Sn such that

wi ă wj or pwi “ wj and i ă jq ô Stdpwqi ă Stdpwqj .

In other words, Stdpwq sorts pairs pwi, iq in lexicographic order. We notice the
following properties:
(3.2)

Invpπ,wq “ Invpπ, Stdpwqq,
ÿ

w:Stdpwq“σ

xw “ Qn,Despσ´1qpxq pσ P Snq,

where Despσq “ ti : σi ą σi`1u is the descent set of σ. Thus the sum χpπq splits as
follows:

χpπq “

ÿ

σPSn

qinvpπ,σqQn,Despσ´1q.

Since χpπq is symmetric by Proposition 3.2, we can apply Proposition 4.2 in
[HHL05a]. Let A be the “super” alphabet

A “ Z` Y Z´ “ t1, 2, 3, . . . , 1̄, 2̄, 3̄, . . .u

consisting of positive letters i P Z` and negative letters ī. Let

zi “ xi pi P Z`q, zi “ ´yi p̄i P Z´q.

Then we have the following expression for X “
ř

i xi, Y “
ř

i yi:

χpπqrX ´ Y s “

ÿ

σPSn

qinvpπ,σqQ̃n,Despσ´1qpx, yq,

where

Q̃n,D “
ÿ

w1ď¨¨¨ďwn
wi“wi`1, wiPZ`ñiRD
wi“wi`1, wiPZ´ñiPD

zw,

and the summation is over the sequences of elements of A. The statement holds for
an arbitrary choice of total ordering on A. We work with the following ordering:

1 ă 1̄ ă 2 ă 2̄ ă ¨ ¨ ¨ .
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We extend the definitions of Std, Inv, and inv to sequences of elements of A,

wi ă wj or pwi “ wj P Z` and i ă jq or pwi “ wj P Z´ and i ą jq

ô Stdpwqi ă Stdpwqj ,

invpπ,wq :“ #Invpπ,wq, Invpπ,wq :“ tpi, jq P Areapπq : wi ą wj or wi “ wj P Z´u,

so that the properties (3.2) are satisfied. Therefore, we have

(3.3) χpπqrX ´ Y s “

ÿ

wPAn

qinvpπ,wqzw.

Setting X “ 0, Y “ ´X, we obtain

χpπqr´Xs “ p´1q
n

ÿ

wPZn
ą0

qinv
1
pπ,wqxw,

where inv1
pπ,wq is the number of nonstrict inversions of w under the path,

inv1
pπ,wq :“ # tpi, jq P Areapπq, wi ě wju .

Reversing the order of labels, we have

χpπqr´Xs “ p´1q
|π|

ÿ

wPZn
ą0

qareapπq´invpπ,wqxw,

which implies Proposition 3.4.
To prove Proposition 3.5, we set X “ qX, Y “ X in (3.3). Applying the

involution from the proof of Lemma 5.1 in [HHL05a] (flipping the sign of the last
label that attacks a label with the same absolute value), we see that the terms
for w P An, such that |wi| “ |wj | for some pi, jq P Areapπq, cancel out. In the
remaining terms we have |wi| ‰ |wj | whenever pi, jq P Areapπq. Therefore the
comparison between wi and wj depends only on |wi| and |wj |. So we can first sum
over sequences in Zą0 and then over the choices of signs. The latter summation
produces an overall factor of pq ´ 1qn, and we obtain Proposition 3.5. �

3.2. Weighted characteristic function. To study the summand of Dαpq, tq in
(2.5) as a function of π, we introduce a more general characteristic function. Given
a function wt : cpπq Ñ R on the set of corners of some Dyck path π of size n, let

(3.4) χpπ,wtq :“
ÿ

wPZn
ą0

qinvpπ,wq

¨

˝

ź

pi,jqPcpπq, wiďwj

wtpi, jq

˛

‚xw,

so in particular p2.5q becomes

Dαpq, tq “

ÿ

touch1pπq“α

tbouncepπqχpπ, 0q.

For a constant function wt “ 1, we recover the simpler characteristic function

(3.5) χpπ, 1q “ χpπq.

It turns out that we can express the weighted characteristic function χpπ,wtq in
terms the unweighted one evaluated at different paths. In particular this implies
that χpπ,wtq is symmetric too.
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Figure 4

Remark 3.6. If π1 is the image of π under the bijection from section 2.4, then we
have that χpπ1, 0q “ FπpX; qq, where FπpX; qq are the path symmetric functions
from Haglund’s book [Hag08, page 95]. As Haglund explains, these functions are
examples of LLT polynomials of vertical strips, using the description of Bylund
and Haiman. In fact, χpπ1, 1q is also an example of an LLT polynomial, but for a
disjoint union of single boxes:

χpπ1, 1q “ LLTran`1s{rans,...,ra1s{ra1spX; qq,

where pa1, . . . , anq “ apπq is the area sequence.

Proposition 3.7. We have that χpπ,wtq is symmetric in the xi variables, and so
it defines an element of SymrXs.

Proof. Let π be a Dyck path, and let pi, jq P cpπq be one of its corners. We denote
by wt1 the weight on π which is obtained from wt by setting the weight of pi, jq to
1. Let π1 be the Dyck path obtained from π by turning the corner inside out, in
other words the Dyck path of smallest area which is both above π and above pi, jq.
Let wt2 be the weight on π1 which coincides with wt on all corners of π1 which are
also corners of π and is 1 on other corners. We claim that

(3.6) χpπ,wtq “
qwtpi, jq ´ 1

q ´ 1
χpπ,wt1q `

1 ´ wtpi, jq

q ´ 1
χpπ1,wt2q.

To see this, notice that if we group the terms on the right-hand side, then both
sides may be written as a sum over vectors w P Zą0. Split both sums according to
terms in which wi ą wj , resulting in an additional factor of q, or wi ď wj , resulting
in an additional weight factor. It is easy to check that both sums agree on both
the left and right sides.

The result now follows because we may recursively express any χpπ,wtq in terms
of χpπq, which we have already remarked is symmetric. �

Example 3.8. In particular, we can use this to extract χpπ, 0q from χpπ1, 1q for all
π1. If S Ă cpπq is any subset of the set of corners, let πS P D denote the path
obtained by flipping the corners that are in S. Then equation (3.6) implies that

(3.7) χpπ, 0q “ p1 ´ qq
´|cpπq|

ÿ

SĂcpπq

p´1q
|S|χpπS, 1q.

For instance, let π be the Dyck path in Figure 4. Then setting xi “ 0 for i ą 3
reduces formula (3.4) to a finite sum over 27 terms, from which we can deduce that

χpπq “ m3 ` p2 ` qqm21 ` p3 ` 3qqm111 “ s3 ` p1 ` qqs21 ` qs111.
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Similarly, if π1 “ πtp1,2qu, we have

χpπ1
q “ s3 ` 2qs21 ` q2s111.

By formula (3.7) we obtain

χpπ, 0q “ p1 ´ qq
´1

`

χpπq ´ χpπ1
q
˘

“ s21 ` qs111.

Example 3.9. We can check that the Dyck path from Example 3.8 is the unique
one satisfying touch1

pπq “ p1, 2q and that bouncepπq “ 1. Therefore, using the
calculation that followed, we have that

Dp2,1qpq, tq “ tχpπ, 0q “ ts21 ` qts111,

which can be seen to agree with ∇C1C2p1q.

Example 3.10. Though we will not need it, this weighted characteristic function
can be used to describe an interesting reformulation of the formula for the modified
Macdonald polynomial given in [HHL05a]. Let μ “ pμ1 ě μ2 ě ¨ ¨ ¨ ě μlq be a
partition of size n. Let us list the cells of μ in the reading order,

pl, 1q, pl, 2q, . . . , pl, μlq, pl ´ 1, 1q, . . . , pl ´ 1, μl´1q, . . . , p1, 1q, . . . , p1, μ1q.

Denote the mth cell in this list by pim, jmq.
We say that a cell pi, jq attacks all cells which are after pi, jq and before pi´1, jq.

Thus pi, jq attacks precisely μi ´ 1 following cells if i ą 1 and all following cells if
i “ 1. Next construct a Dyck path πμ of length n in such a way that pm1,m2q

with m1 ă m2 is under the path if and only if pim1
, jm1

q attacks pim2
, jm2

q. More
specifically, the path begins with μl North steps, then it has μl pairs, of steps East-
North, then μl´1´μl North steps followed by μl´1 East-North pairs and so on until
we reach the point pn´μ1, nq. We complete the path by performing μ1 East steps.

Note that the corners of πμ precisely correspond to the pairs of cells pi, jq,

pi ´ 1, jq. We set the weight of such a corner to qarmpi,jqt´1´legpi,jq and denote
the weight function thus obtained by wtμ. Note that in our convention for χpπ,wtq
we should count noninversions in the corners, while in [HHL05a] they count “de-
scents”, which translates to counting inversions in the corners. Taking this into
account, we obtain a translation of their Theorem 2.2:

H̃μ “ q´npμ1
q`p

μ1
2 qtnpμqχpπμ,wtμq.

4. Raising and lowering operators

Now let Dk,n be the set of Dyck paths from p0, kq to pn, nq, which we will call
partial Dyck paths, and let Dk be their union over all n. For π P Dk,n, let |π| “ n´k
denote the number of North steps. Unlike D, the union of the sets Dk over all k is
closed under the operation of adding a North or East step to the beginning of the
path, and any Dyck path may be created in such a way starting with the empty
path in D0. This is the set of paths for which we will develop a recursion. More
precisely, we will define an extension of the function χ to a map from Dk to a new
vector space Vk, and prove that certain operators on these vector spaces commute
with adding North and East steps.



A PROOF OF THE SHUFFLE CONJECTURE 675

Given a polynomial P depending on variables u, v, define

pΔuvP qpu, vq “
pq ´ 1qvP pu, vq ` pv ´ quqP pv, uq

v ´ u
,

pΔ˚
uvP qpu, vq “

pq ´ 1quP pu, vq ` pv ´ quqP pv, uq

v ´ u
.

We can easily check that Δ˚
uv “ qΔ´1

uv . We can recognize these operators as a
simple modification of Demazure–Lusztig operators. The following can be checked
by direct computation:

Proposition 4.1. We have the following relations:

pΔuv ´ qqpΔuv ` 1q “ 0, pΔ˚
uv ´ 1qpΔ˚

uv ` qq “ 0,

ΔuvΔvwΔuv “ ΔvwΔuvΔvw, Δ˚
uvΔ

˚
vwΔ

˚
uv “ Δ˚

vwΔ
˚
uvΔ

˚
vw.

Definition 4.2. Let Vk “ SymrXs b Qry1, y2, . . . , yks, and let

Ti “ Δ˚
yiyi`1

: Vk Ñ Vk, i “ 1, . . . , k ´ 1.

Define operators
d` : Vk Ñ Vk`1, d´ : Vk Ñ Vk´1

by

(4.1) pd`F qrXs “ T1T2 ¨ ¨ ¨Tk pF rX ` pq ´ 1qyk`1sq ,

and

(4.2) pd´F qrXs “ ´F rX ´ pq ´ 1qyksExpr´y´1
k Xs|y´1

k

for F P Vk.

Remark 4.3. Note that the operator d´ is related to the Bi operators,

d´pyikF q “ ´Bi`1F

for F P Vk which do not depend on yk.

We now claim the following theorem:

Theorem 4.4. For any Dyck path π of size n, let ε1 ¨ ¨ ¨ ε2n denote the corresponding
sequence of plus and minus symbols where a plus denotes an East step, and a minus
denotes a North step reading π from bottom left to top right. Then

χpπq “ dε1 ¨ ¨ ¨ dε2np1q

as an element of V0 “ SymrXs.

Example 4.5. Let π be the Dyck path from Example 3.8. We have that

d´d´d`d`d´d`p1q “ d´d´d`d`d´p1q “ d´d´d`d`ps1q

“ d´d´d` ps1 ` pq ´ 1qy1q “ d´d´ ps1 ` pq ´ 1qpy1 ` y2qq

“ d´ ps2 ` s11 ` pq ´ 1qs1y1q “ s3 ` p1 ` qqs21 ` qs111,

which agrees with the value calculated for χpπq.

Combining this result with equation (3.7) implies the following:

Corollary 4.6. The following procedure computes χpπ, 0q: start with 1 P SymrXs “

V0, follow the path from right to left applying 1
q´1 rd´, d`s for each corner of w, and

d´ pd`q for each North presp. Eastq step that is not a side of a corner.
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4.1. Rank experiment. The proof of Theorem 4.4 will be divided into several
parts. However, before we proceed to the proof of Theorem 4.4, we would like to
explain why we expected such a result to hold, and how we obtained it. In fact,
the definition of χk from equation (4.5) in the proof below actually came first, and
was discovered using computer experimentation, as we now explain.

First note that the number of Dyck paths of length n is given by the Catalan
number Cn “

1
n`1

`

2n
n

˘

which grows exponentially with n. The dimension of the

degree n part of SymrXs is the number of partitions of size n, which grows sub-
exponentially. For instance for n “ 3, we have five Dyck paths but only three
partitions. Thus there must be linear dependences between different χpπq.

Now fix a partial Dyck path π1 P Dk,n. For each partial Dyck path π2 P Dk,n1 ,
we can reflect π2 and concatenate it with π1 to obtain a full Dyck path πop

2 π1

of length n ` n1 ´ k. We may then consider its character χpπop
2 π1q. We keep

n, π1 fixed and vary n1, π2, thus obtaining a map ϕπ1
: Dk Ñ SymrXs. The map

π1 Ñ ϕπ1
is a map from Dk to the vector space of maps from Dk to SymrXs, which

is very high dimensional, because both the set Dk is infinite and SymrXs is infinite
dimensional. A priori, it could be the case that the images of the elements of Dk,n

in MapspDk, SymrXsq are linearly independent. However, computer experiments
convinced us that it is not the case, and that there should be a vector space Vk,n

whose dimension is generally smaller than the size of Dk,n. In fact, by restricting
n1 to be bounded by some arbitrary but large enough cut-off value, we were able to
predict that the dimension of this space stabilizes to a very simple formula, which
is the dimension of Vk,n, the degree n ´ k component of Vk as it is defined above.

We therefore predicted the existence of a commutative diagram

Dk,n Vk,n

MapspDk, SymrXsq

χk,n

ϕ

for some map χk,n, whose image spans all of Vk,n. This ultimately led to the guess of
the formula for χk in (4.5) as the correct extension of χpπ, 1q. It is not at all trivial
to deduce this formula from the dimension of Vk,n, and indeed, some substantial
guesswork was required. However, the validity of any particular guess χk,n can be
determined experimentally, by testing if its kernel in the Cpqq-span of Dk,n agrees
with the kernel of ϕ. Clearly the existence of a testable criterion such as this makes
the problem of determining χk,n experimentally much more reasonable.

Once the definition of χk,n was conjectured, finding formulas for d˘ that satisfy
(4.6) turned out to be relatively straightforward.

4.2. Characteristic functions of partial Dyck paths. The following definition
is motivated by Proposition 3.5. Let π P Dk,n. Let σ “ pσ1, σ2, . . . , σkq P Zą0 be a
tuple of distinct numbers. The elements of Impσq Ă Zą0 will be called special. Let

Uπ,σ “ tw P Zn
ą0 : wi “ σi for i ď k, wi ‰ wj for pi, jq P Areapπqu .

The second condition on w is the “no attack” condition as before. The first condi-
tion says that we put the special labels in the positions 1, 2, . . . , k as prescribed by
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σ. Let

(4.3) χ1
σpπq “

ÿ

wPUπ,σ

qinvpπ,wqzw.

Here we use variables z1, z2, . . ..
Suppose σ is a permutation, i.e., σi ď k for all i. Set zi “ yi for i ď k and

zi “ xi´k for i ą k. We denote

χ1
kpπq “ χ1

p1,2,...,kqpπq.

Let us group the summands in (4.3) according to the positions of special labels.
More precisely, let S Ă t1, . . . , nu such that t1, . . . , ku Ă S and wS : S Ñ t1, . . . , ku

such that wS
i “ σi for i “ 1, 2, . . . , k and wi ‰ wj for i, j P S, pi, jq P Areapπq. Set

US,wS

π,σ :“
�

w P Uπ,σ : wi “ wS
i for i P S, wi ą k for i R S

(

,

ΣS,wS

π,σ :“
ÿ

wPUS,wS
π,σ

qinvpπ,wqxw, χ1
σpπq “

ÿ

S,wS

ΣS,wS

π,σ .

Let m1 ă m2 ă ¨ ¨ ¨ ă mr be all the positions not in S. Let πS be the unique Dyck
path of length r such that pi, jq P AreapπSq if and only if mi,mj P Areapπq. We
have

ΣS,wS

π,σ “ qA
ź

iPS

ywi

ÿ

wPZr
ą0no attack

qinvpπS ,wqxw,

where

A “ #tpi, jq P Areapπq : pi P S, j P S,wS
i ą wS

j q or pi R S, j P Squ.

By Proposition 3.5 we have

(4.4) ΣS,wS

π,σ “ qApq ´ 1q
|S|´nχpπS

q rpq ´ 1qXs

ź

iPS

ywi
.

In particular χσpπq is a symmetric function in x1, x2, . . . , and it makes sense to
define

(4.5) χσpπqrXs :“
1

y1y2 ¨ ¨ ¨ yk
pq ´ 1q

|π|χ1
σpπq

„

X

q ´ 1

j

P Vk, χkpπq :“ χIdk
pπq.

Remark 4.7. The identity (4.4) also implies that the coefficients of χσpπqrXs are
polynomials in q, and it gives a way to express χσ in terms of the characteristic
functions χpπSq for all S.

For k “ 0, we recover χpπq:

χ0pπq “ χpπq pπ P D0 “ Dq.

Thus, it suffices to prove that

(4.6) χk`1pEπq “ d`χkpπq, χk´1pNπq “ d´χkpπq pπ P Dkq.
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4.3. Raising operator. We begin with the first case. Let π P Dk,n so that Eπ P

Dk`1,n`1, and we need to express χk`1pEπq in terms of χkpπq. Let σ be the
following sequence:

σ “ pk ` 1, 1, 2, . . . , kq.

Then we have a bijection f : Uπ,Idk
Ñ UEπ,σ obtained by sending

w “ p1, 2, . . . , k, wk`1, . . . , wnq

to

fpwq :“ pk ` 1, 1, 2, . . . , k, wk`1, . . . , wnq.

This is possible because 1 does not attack k`1 in Eπ. We clearly have invpEπ, fpwqq

“ invpπ,wq ` k, which implies

χ1
σpEπq “ zk`1q

kχ1
kpπq,

where both sides are written in terms of the variables zi. When we pass to the
variables xi, yi on the left, we have

pz1, z2, . . .q “ py1, y2, . . . , yk`1, x1, x2, . . .q,

but on the right we have

pz1, z2, . . .q “ py1, y2, . . . , yk, x1, x2, . . .q.

Thus we need to perform the substitution X “ yk`1 ` X,

χ1
σpEπqrXs “ yk`1q

kχ1
kpπqrX ` yk`1s.

Performing the transformation (4.5), we obtain

(4.7) χσpEπq “ qkχkpπq rX ` pq ´ 1qyk`1s .

To finish the computation, we need to relate χk`1 “ χIdk`1
and χσ. We first note

that σ can be obtained from Idk`1 by successively swapping neighboring labels.
Let σp1q “ Idk`1 and

σpiq
“ pi, 1, 2, . . . , i ´ 1, i ` 1, . . . , k ` 1q pi “ 2, 3, . . . , k ` 1q

so that σ “ σpk`1q. It is clear that σpi`1q can be obtained from σpiq by interchanging
the labels i and i ` 1.

We show below (Proposition 4.8) that this kind of interchange is controlled by
the operator Δyi,yi`1

:

(4.8) χσpi`1q pEπq “ Δyi,yi`1
χσpiq pEπq.

This implies

χσpEπq “ Δyk´1,yk
¨ ¨ ¨Δy1,y2

χk`1pEπq.

When we insert this equation into (4.7), we arrive at

χk`1pEπq “ T1 ¨ ¨ ¨Tk pχkpπq rX ` pq ´ 1qyk`1sq “ d`χkpπq.
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4.4. Swapping operators.

Proposition 4.8. For any w P Dk, σ as above and m special, suppose that m ` 1
is not special or σ´1pmq ă σ´1pm ` 1q. Then we have

χ1
τmσpwq “ Δzm,zm`1

χ1
σ,

where τm is the transposition m Ø m ` 1, pτmσqi “ τmpσiq for i “ 1, . . . , k.

Proof. We decompose both sides as follows. For any w P Uπ,σ, let Spwq be the set
of indices j where wj P tm,m ` 1u. For w,w1 P Uπ,σ write w „ w1 if Spwq “ Spw1q

and wi “ w1
i for all i R Spwq. This defines an equivalence relation on Uπ,σ. The

sum (4.3) is then decomposed as follows:

(4.9) χ1
σpπq “

ÿ

rwsPUπ,σ{„

qinv1pπ,wq
ź

iRS

zwi

ÿ

w1„w

apw1
q,

where

inv1pπ,wq “ #tpi, jq P Areapπq : wi ą wj , i R Spwq or j R Spwqu,

which does not depend on the choice of a representative w in the equivalence class
rws, and

apwq “ qinv2pπ,wq
ź

iPS

zwi
,

inv2pπ,wq “ #tpi, jq P Areapπq : wi ą wj , i, j P Spwqu.

Let f : Uπ,σ Ñ Uπ,τmσ be the bijection defined by fpwqi “ τmpwiq. This bijection
respects the equivalence relation „, and we have Spfpwqq “ Spwq. Moreover, we
have inv1pπ,wq “ inv1pπ, fpwqq. We now make the stronger claim that for any
w P Uπ,σ

(4.10)
ÿ

w1„fpwq

apw1
q “ Δzm,zm`1

ÿ

w1„w

apw1
q,

which would imply the statement by summing over all equivalence classes.
For each w P Uπ,σ, the set Spwq is decomposed into a disjoint union of runs, i.e.,

subsets

R “ tj1, . . . , jlu Ă t1, . . . , nu, j1 ă ¨ ¨ ¨ ă jl

such that in each run ja attacks ja`1 for all a and elements of different runs do
not attack each other. Because of the nonattacking condition, the labels wja must
alternate between m,m ` 1, and ja does not attack ja`2. Thus to fix w in each
equivalence class, it is enough to fix wj1 for each run. Suppose the runs of Spwq

have lengths l1, l2, . . . , lr and the first values of w in each run are c1, c2, . . . , cr,
respectively.

With this information apwq can be computed as follows:

apwq “

r
ź

i“1

apli, ciq,

where

apl, cq :“

$

’

’

’

&

’

’

’

%

ql
1
´1zl

1

mzl
1

m`1 l “ 2l1, c “ m,

ql
1
zl

1
`1

m zl
1

m`1 l “ 2l1 ` 1, c “ m,

ql
1
zl

1

mzl
1

m`1 l “ 2l1, c “ m ` 1,

ql
1
zl

1

mzl
1
`1

m`1 l “ 2l1 ` 1, c “ m ` 1.
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Figure 5

For instance, let k “ 3, and let π be the Dyck path in Figure 5, and let

w “ p1, 3, 2, 7, 1, 7, 1, 2q P Uπ,p132q.

Let m “ 1. Then we have Spwq “ t1, 3, 5, 7, 8u, which decomposes into two runs
t1, 3, 5u and t7, 8u. So we have r “ 2, pl1, l2q “ p3, 2q, pc1, c2q “ p1, 1q and we obtain

apwq “ ap3, 1qap2, 1q “ qz21z2z1z2 “ qz31z
2
2 .

Note that by the assumption on σ, we have c1 “ m, while ci can take arbitrary
values tm,m ` 1u for i ą 1. This implies

ÿ

w1„w

apw1
q “ apl1,mq

r
ź

i“2

papli,mq ` apli,m ` 1qq.

On the other hand we have
ÿ

w1„fpwq

apw1
q “

ÿ

w1„w

apfpw1
qq “ apl1,m ` 1q

r
ź

i“2

papli,mq ` apli,m ` 1qq.

Now notice that for all l the sum apl,mq ` apl,m` 1q is symmetric in zm, zm`1.
The operator Δzm,zm`1

commutes with multiplication by symmetric functions and
satisfies

Δzm,zm`1
papl,mqq “ apl,m ` 1q.

This establishes (4.10) and the proof is complete. �
Remark 4.9. The arguments used in the proof can be used to show that in the case
when m,m ` 1 are both not special, the function χ1

σpπq is symmetric in zm, zm`1.
In particular, we can obtain a direct proof of the fact that χ1

σ is symmetric in the
variables zm, zm`1, zm`2, . . . for i “ maxpσq ` 1, without use of Proposition 3.5.
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4.5. Lowering operator. We now turn to the remaining identity χk´1pNπq “

d´χkpπq. Assume π P Dk,n, so that Nπ P Dk´1,n. We observe that

χ1
k´1pNπqrX ` yks “

ÿ

rě0

χ1
k,rpπqrXs,

where

χ1
k,rpπq “ χ1

σpπq, σ “ p1, 2, . . . , k ´ 1, k ` rq,

and to get to the second equality, we have summed over all possible values of
r “ wk ´ k that do not result in an attack. It is convenient to set x0 “ yk. Using
Proposition 4.8, we can characterize χ1

k,rpπq by

(4.11) χ1
k,0pπq “ χ1

kpπq, χ1
k,r`1pπq “ Δxr ,xr`1

χ1
k,rpπq pr ě 0q.

Now notice that there is a unique expansion

χ1
kpπqrXs “

ÿ

jě1

yjkgjpπqrX ` yks, gjpπq P Vk´1.

The advantage over the more obvious expansion in powers of yk is that each co-
efficient gjrX ` yks is symmetric in the variables yk, x1, . . . . As a result, we have
that

χ1
k,rpπqrXs “ Δxr´1,xr

¨ ¨ ¨Δx2,x1
Δyk,x1

ÿ

iě1

yikgipπqrX ` yks “

ÿ

iě1

fi,rgipπqrX ` yks,

where

fi,r “ Δxr´1,xr
¨ ¨ ¨Δx1,x2

Δyk,x1
pyikq pi ě 1, r ě 0q.

The extra symmetry in the yk variable is used to pass Δyk,x1
by multiplication by

gipπqrX ` yks.
Now we need an explicit formula for fi,r:

Proposition 4.10. Denote Xr “ yk ` x1 ` ¨ ¨ ¨ ` xr, X´1 “ 0. We have

fi,r “
hirp1 ´ qqXrs ´ hirp1 ´ qqXr´1s

1 ´ q
.

Proof. Denote the right-hand side by f 1
i,r. The proof goes by induction on r. For

r “ 0 both sides are equal to yik. Thus it is enough to show that

(4.12) Δxr,xr`1
pf 1

i,rq “ f 1
i,r`1.

Use Xr “ Xr´1 ` xr to write f 1
i,r as

(4.13) f 1
i,r “

i
ÿ

j“1

xj
rhi´jrp1 ´ qqXr´1s “ xrhi´1rp1 ´ qqXr´1 ` xrs.

Now Xr´1 does not contain the variables xr, xr`1, so we have

Δxr,xr`1
pf 1

i,rq “

i
ÿ

j“1

hi´jrp1 ´ qqXr´1sΔxr ,xr`1
xj
r.

Using the formula

Δxr ,xr`1
xj
r “ xr`1hj´1rp1 ´ qqxr ` xr`1s,



682 ERIK CARLSSON AND ANTON MELLIT

which is straightforward to check, we can evaluate

Δxrxr`1
f 1
i,r “ xr`1

i
ÿ

j“1

hj´1rp1 ´ qqxr ` xr`1shi´jrp1 ´ qqXr´1s

“ xr`1hi´1rp1 ´ qqXr ` xr`1s,

which matches f 1
i,r`1 by (4.13). �

Now, if we sum over all r, we obtain

(4.14)
ÿ

rě0

fi,r “ p1 ´ qq
´1hi rp1 ´ qqpX ` ykqs .

Thus

χ1
k´1pNπqrX ` yks “ p1 ´ qq

´1
ÿ

iě1

hirp1 ´ qqpX ` ykqsgipπqrX ` yks.

This implies

(4.15) χk´1pNπqrXs “ ´
pq ´ 1qn´k

y1 ¨ ¨ ¨ yk´1

ÿ

iě1

hir´Xsgipπq

„

X

q ´ 1

j

.

On the other hand gipπq were defined in such a way that

χkpπqrpq ´ 1qXs “
pq ´ 1qn´k

y1 ¨ ¨ ¨ yk

ÿ

iě1

yikgipπqrX ` yks.

Substituting 1
q´1X ´ yk for X gives

(4.16) χkpπqrX ´ pq ´ 1qyks “
pq ´ 1qn´k

y1 ¨ ¨ ¨ yk

ÿ

iě1

yikgipπq

„

X

q ´ 1

j

.

Comparing (4.15) and (4.16), we obtain

χk´1pNπqrXs “
ÿ

iě0

´hi`1r´Xs

´

χkpπqrX ´ pq ´ 1qyks|yi
k

¯

.

This can be seen to coincide with d´χkpπq, establishing the second case of (4.6).
Thus the proof of Theorem 4.4 is complete.

4.6. Main recursion. We now show how to express all of Dαpq, tq using our op-
erators:

Theorem 4.11. If α is a composition of length l, we have

Dαpq, tq “ dl´pNαq,

where Nα P Vl is defined by the recursion relations

(4.17) NH “ 1, Nr1,αs “ d`Nα, Naα “
ta´1

q ´ 1
rd´, d`s

ÿ

β|ùa´1

d
lpβq´1
´ Nαβ .

Proof. For any k ą 0, let D0
k Ă Dk denote the subset of partial Dyck paths that

begin with an East step. For k “ 0, let D0
0 “ tHu. Define functions χ0 : D0

k Ñ Vk

by

χ0
pHq “ 1, χ0

pEN iπq “
1

q ´ 1
rd´, d`sdi´1

´ χ0
pπq,

χ0
pEπq “ d`χ

0
pπq.
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Given a composition α of length l, let

Dα “
�

π P D : touch1
pπq “ α

(

.

By the definition of touch1, every element of Dα is of the form π “ N lπ̃ for a unique
element π̃ P D0

l so that by Corollary 4.6 we have

χpπ, 0q “ dl´χ
0
l pπ̃q.

Let

N 1
α “

ÿ

πPDα

tbouncepπqχ0
l pπ̃q P Vl,

so that Dαpq, tq “ dl´pN 1
αq. It suffices to show that N 1

α satisfies the relations (4.17),
and so agrees with Nα.

For a composition α of length l and 0 ď r ď l, we have a map γα,r : Dα Ñ D as
follows: γα,rpπq “ Nr`1EN l´rπ̃. Clearly |γα,rpπq| “ |π| ` 1. From the definition
of touch1, we see the following relation:

bouncepγα,rpπqq “ bouncepπq `
ÿ

iąr

αi.

Next we compute touch1
pγα,rpπqq. For 0 ď i ď r, we have

bouncepN i`2ENr´iEN l´rπ̃q “ bouncepN i`1EN l´iπ̃q.

This implies

touch1
pγα,rpπqq “

˜

1 `

ÿ

iąr

αi, α1, α2, . . . , αr

¸

,

so in particular touch1
pγα,rpπqq depends only on α and r.

Since every nonempty Dyck path can be obtained as γα,rpπq in a unique way, we
obtain for every composition α of length r,

Daα “

ğ

β|ùa´1

γαβ,rpDαβq.

It is not hard to see that this identity precisely translates to the relations (4.17) for
N 1

α. �

Example 4.12. Using Theorem 4.11, we find that

N31 “
t3

pq ´ 1q2
pd´``´`` ´ d´```´` ´ d`´`´`` ` d`´``´`q

` r
t2

q ´ 1
pd´`´``` ´ d`´´```q “ qt3y21 ´ qt2y1e1 P V2,

where dε1¨¨¨εn “ dε1 ¨ ¨ ¨ dεnp1q. We may then check that

d2´N31 “ qt3B3B1p1q ` qt2B2B1B1p1q “ ∇C3C1p1q.

Example 4.13. Let α “ pa1, . . . , akq be a composition of norm n and length k, and
consider the polynomials in q, t given by

Dp´q
α pq, tq “ xDαpq, tq, eny “ p´1q

nDαpq, tqr´1s,

which encode the Catalan case of the compositional shuffle conjecture. This case
of the conjecture was proved in [GXZ12], using recursions (Proposition 3.12) that
are similar to those defining Nα (4.17), and it is natural to ask if they follow as a
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special case. Indeed, this can be achieved with help of the following proposition:

Proposition 4.14. Let π be Dyck path of size N ending with k East steps, and let
pε1, . . . , ε2N´k,`kq denote the corresponding sequence of plus and minus symbols,
as in Theorem 4.4. Then for f P Vk, we have

(4.18)
`

dε1 ¨ ¨ ¨ dε2N´k
pfq

˘

r´1s “ p´1q
Nqareapπqf r´qks

ˇ

ˇ

yi“qi´1 .

Proof. We prove this by induction on 2N ´ k, the number of d˘ symbols.
First, suppose the final step ε2N´k is a plus. Let ρk denote the homomorphism

f ÞÑ f r´qks|yi“qi´1 on the right-hand side of (4.18). Using the definition (4.1) of
d`, and the observation that ρkTi “ ρk, we have that

ρk`1pd`fq “ ρk`1pf rX ` pq ´ 1qyk`1sq “ ρkpfq.

The case now follows from the above equation, the induction step, and the fact that
the path π remains the same.

The second case follows easily from the formula

ρkpd´pfyak`1qq “ ´qd`1´pk´1qaρkpfq,

for f P Vk homogeneous of degree d in the symmetric function part. The base case
is obvious. �

The recursions of [GXZ12] now follow fairly easily from (4.17) as a special case,
if Theorem 4.11 is taken as the definition of Dαpq, tq. The relations for Nα were not
discovered this way, and the authors only noticed this connection after following up
on a useful suggestion from one of the referees, for which the authors are grateful.

5. Operator relations

We have operators

(5.1) ek, d˘, Ti ýV˚ “ V0 ‘ V1 ‘ ¨ ¨ ¨ ,

where ek is the projection onto Vk, and the others are defined as above. It is natural
to ask for a complete set of relations between them. They are formalized in the
following algebra:

Definition 5.1. The Dyck path algebra A “ Aq (over R) is the path algebra of the
quiver with vertex set Zě0, arrows d` from i to i` 1, arrows d´ from i` 1 to i for
i P Zě0, and loops T1, T2, . . . , Tk´1 from k to k subject to the following relations:

pTi ´ 1qpTi ` qq “ 0, TiTi`1Ti “ Ti`1TiTi`1, TiTj “ TjTi p|i ´ j| ą 1q,

Tid´ “ d´Ti, d`Ti “ Ti`1d`, T1d
2
` “ d2`, d2´Tk´1 “ d2´,

d´pd`d´ ´ d´d`qTk´1 “ qpd`d´ ´ d´d`qd´ pk ě 2q,

T1pd`d´ ´ d´d`qd` “ qd`pd`d´ ´ d´d`q,

where in each identity k denotes the index of the vertex where the respective paths
begin. We have used the same letters Ti, d˘ to label the ith loop at every node k
to match with the previous notation. To distinguish between different nodes, we
will use Tiek, where ek is the idempotent associated with node k.
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We will prove:

Theorem 5.2. The operators (5.1) define a representation of A on V˚. Further-
more, we have an isomorphism of representations

ϕ : Ae0
„
ÝÑ V˚,

which sends e0 to 1 P V0, and maps ekAe0 isomorphically onto Vk.

The proof will occupy the rest of this section. We begin by establishing that we
have a defined a representation of the algebra.

Lemma 5.3. The operators Ti and d˘ satisfy the relations of Definition 5.1.

Proof. The first line is just Proposition 4.1, and most follow from definition. The
first one that does not is the commutation relation of d` with Ti. We have

d`TipF q “ T1 ¨ ¨ ¨Tk ppTiF qrX ` pq ´ 1qyk`1sq

“ T1 ¨ ¨ ¨TiTi`1Ti ¨ ¨ ¨TkpF qrX ` pq ´ 1qyk`1s

“ T1 ¨ ¨ ¨Ti`1TiTi`1 ¨ ¨ ¨TkpF qrX ` pq ´ 1qyk`1s “ Ti`1d`pF q,

using the braiding relations.
For the next, we have

d2`F “ T1T2 ¨ ¨ ¨Tk`1T1T2 ¨ ¨ ¨TkpF rX ` pq ´ 1qyk`1 ` pq ´ 1qyk`2sq

“ T2T3 ¨ ¨ ¨Tk`1T1T2 ¨ ¨ ¨Tk`1pF rX ` pq ´ 1qyk`1 ` pq ´ 1qyk`2sq.

The last Tk`1 can be removed because its argument is symmetric in yk`1 and yk`2,
and we obtain T´1

1 d2`F .
The next identity is more technical. The operator image of Tk´1 ´ 1 consists of

elements of the form pqyk´1 ´ ykqF , where F is symmetric in yk´1 and yk. Thus
we need to check that d2´ vanishes on such elements. Let us evaluate d2´ on

pqyk´1 ´ ykqyak´1y
b
kF,

where F does not contain the variables yk´1 and yk, and a, b P Zě0. We obtain

pqBa`2Bb`1 ´ Ba`1Bb`2qF.

This expression is antisymmetric in a, b by Corollary 3.4 of [HMZ12], which implies
our identity.

Next using the previous relations and Lemma 5.4 below write

d´pd`d´ ´ d´d`qTk´1 “ pq ´ 1qd´T1T2 ¨ ¨ ¨Tk´1ykTk´1

“ qpq ´ 1qd´T1T2 ¨ ¨ ¨Tk´2yk´1

“ qpq ´ 1qT1T2 ¨ ¨ ¨Tk´2yk´1d´ “ qpd`d´ ´ d´d`qd´.

(5.2)

Similarly,

T1pd`d´ ´ d´d`qd` “ pq ´ 1qT1T1T2 ¨ ¨ ¨Tkyk`1d`

“ pq ´ 1qqkT1y1T
´1
1 T´1

2 ¨ ¨ ¨T´1
k d` “ pq ´ 1qqkT1y1T

´1
1 d`T

´1
1 ¨ ¨ ¨T´1

k´1(5.3)

“ pq ´ 1qqkd`y1T
´1
1 ¨ ¨ ¨T´1

k´1 “ qd`pd`d´ ´ d´d`q. �

To establish the isomorphism, we first show that we can produce the operators
of multiplication by yi from A.



686 ERIK CARLSSON AND ANTON MELLIT

Lemma 5.4. For F P Vk, we have

(5.4) pd´d` ´ d`d´qF “ pq ´ 1qT1T2 ¨ ¨ ¨Tk´1p´ykF q, yi “
1

q
Tiyi`1Ti.

Proof. First, we endow Vk with the following twisted action of SymrXs:

pF ˚ GqrXs “ F

«

X ` pq ´ 1q

k
ÿ

i“1

yi

ff

G,

for F P SymrXs, and G P Vk. It can be checked that the operators d`, d´ intertwine
this action:

(5.5) d`pF ˚ Gq “ F ˚ d`G, d´pF ˚ Gq “ F ˚ d´G.

For the second one, for instance, it suffices to assume that k “ 1. Then by the
definition of d´ given in (4.2), we have

d´pF rX ` pq ´ 1qy1sGq “ ´F rXsGrX ´ pq ´ 1qy1sExpr´y´1
1 Xs

ˇ

ˇ

y´1
1

“ F ˚ d´G.

We will not need this, but in fact, if π1 P Dk, π2 P D, and π1 ¨ π2 P Dk is their
concatenation, then we must also have that

χkpw1 ¨ w2q “ χpw2q ˚ χkpw1q.

Since the operators on both sides commute with the twisted action of SymrXs

introduced above, we may assume without loss of generality that F is a polynomial
of y1, y2, . . . , yk.

Write the left-hand side of the first identity as

d´T1 ¨ ¨ ¨Tk´1TkF ´ T1 ¨ ¨ ¨Tk´1 ppd´F qrX ` pq ´ 1qyksq .

The operator d´ in the first summand involves only the variable yk`1. Thus we
can write the left-hand side as

T1 ¨ ¨ ¨Tk´1pd´TkF ´ pd´F qrX ` pq ´ 1qyksq.

Hence it is enough to prove

d´TkF ´ pd´F qrX ` pq ´ 1qyks “ p1 ´ qqykF.

It is clear that none of the operations involve the variables y1, y2, . . . , yk´1. Thus
we can assume F “ yik for i P Zě0 without loss of generality. Direct computation
gives

Tkpyikq “ yik`1 ` p1 ´ qq

i
ÿ

j“1

yjky
i´j
k`1.

Thus the left-hand side equals

´ hi`1r´Xs ´ p1 ´ qq

i
ÿ

j“1

yjkhi´j`1r´Xs ` hi`1r´X ´ pq ´ 1qyks

“ ´p1 ´ qq

i
ÿ

j“1

yjkhi´j`1r´Xs ` p1 ´ qq

i`1
ÿ

j“1

yjkhi´j`1r´Xs “ p1 ´ qqyi`1
k .

The second relation is easy. �
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The operators of multiplication by yi are characterized by these relations and
therefore come from elements of A. We next establish the relations these operators
satisfy within A:

Lemma 5.5. For k P Zą0 define elements y1, . . . , yk P ekAek by solving for yiF in
the identities (5.4). Then the following identities hold in A:

yiTj “ Tjyi for i R tj, j ` 1u,

yid´ “ d´yi, d`yi “ T1T2 ¨ ¨ ¨TiyipT1T2 ¨ ¨ ¨Tiq
´1d`,

yiyj “ yjyi for any i, j.

Proof. Note that y1 can be written as

y1 “
1

qk´1pq ´ 1q
pd`d´ ´ d´d`qTk´1 ¨ ¨ ¨T1.

Our task becomes easier if we notice that it is enough to check the first identity
for i “ 1 and i “ k, the second one for i “ k, the third one for i “ 1, and the last
one for i “ 1, j “ k. The other cases can be deduced from these by applying the
T -operators.

For j ą 1, we have

y1Tj “
1

qk´1pq ´ 1q
pd`d´ ´ d´d`qTk´1 ¨ ¨ ¨T1Tj

“
1

qk´1pq ´ 1q
pd`d´ ´ d´d`qTj´1Tk´1 ¨ ¨ ¨T1 “ Tjy1.

Similarly, we verify that yk commutes with T´1
j hence with Tj for j ă k ´ 1.

Reversing the arguments in (5.2) and (5.3), we verify the second and the third
identities.

Thus it is left to check that yky1 “ y1yk. We assume k ě 2. Write the left-hand
side as

yky1 “
1

q ´ 1
T´1
k´1 ¨ ¨ ¨T´1

1 pd`d´ ´ d´d`qy1

“
1

q ´ 1
T´1
k´1 ¨ ¨ ¨T´1

1 pT1y1T
´1
1 qpd`d´ ´ d´d`q,

using the already established commutation relations and that k ě 2 to swap
T1y1T

´1
1 and d´. Performing the cancellation, we obtain y1yk. �

The following lemma completes the proof of the theorem:

Lemma 5.6. The elements of the form

(5.6) dm´ya1
1 ¨ ¨ ¨ y

ak`m

k`m dk`m
` e0

with ak`1 ě ak`2 ě ¨ ¨ ¨ ě ak`m form a basis of Ae0. Furthermore, the representa-
tion ϕ maps these elements to a basis of V˚.

Proof. We first show that elements of the form (5.6), with no condition on the ai
span A. It suffices to check that the span of these elements is invariant under d´,
Ti, and d`. This can be done by applying the following reduction rules that follow
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from the definition of A and Lemma 5.5:

Tid´ Ñ d´Ti, Tjyi Ñ yiTj pi R tj, j ` 1uq,

Tiyi Ñ yi`1Ti ` p1 ´ qqyi, Tiyi`1 Ñ yiTi ` pq ´ 1qyi,

Tid
k`m
` e0 Ñ dk`m

` e0,

d`d´ Ñ d´d` ` pq ´ 1qT1T2 ¨ ¨ ¨Tk´1yk, yid´ Ñ d´yi.

The next step is to reduce the spanning set. We can use the following identity,
which follows from d2´Tk´1 “ d2´:

dm´ p1 ´ Tjqya1
1 ¨ ¨ ¨ y

ak`m

k`m dk`m
` e0 “ 0 pk ă j ă k ` mq.

Note that Tj commutes with yjyj`1. Suppose aj ă aj`1. Then we can rewrite the
above identity as

0 “ dm´ ya1
1 ¨ ¨ ¨ y

aj

j y
aj

j`1p1 ´ Tjqy
aj`1´aj

j`1 y
aj`2

j`2 ¨ ¨ ¨ y
ak`m

k`m dk`m
` e0.

Using Tjyj`1 “ yjpTj `pq´1qq, Tjyr “ yrTj for r ą j`1, and Tjd
k`m
` e0 “ dk`m

` e0,
we can rewrite the identity as vanishing of a linear combination of terms of the form
(5.6), and the lexicographically smallest term is precisely

dm´ya1
1 ¨ ¨ ¨ y

ak`m

k`m dk`m
` e0.

Thus we can always reduce terms of the form (5.6) which violate the condition
ak`1 ě ak`2 ě ¨ ¨ ¨ ě ak`m to a linear combination of lexicographically greater
terms, showing that the subspace in the lemma at least spans Ae0.

We now show that they map to a basis of V˚, which also establishes that they
are independent, completing the proof. Consider the image of the elements of our
spanning set

dm´ ya1
1 ¨ ¨ ¨ y

ak`m

k`m dk`m
` p1q “ dm´ pya1

1 ¨ ¨ ¨ y
ak`m

k`m q,

(5.7) p´1q
mya1

1 ya2
2 ¨ ¨ ¨ yak

k Bak`1`1Bak`2`1 ¨ ¨ ¨Bak`m`1p1q.

Notice that λ :“ pak`1 ` 1, ak`2 ` 1, . . . , ak`m ` 1q is a partition, so

Bak`1`1Bak`2`1 ¨ ¨ ¨Bak`m`1p1q

is a multiple of the Hall–Littlewood polynomial H̃λ1 r´X; 1{q, 0s. These polynomials
form a basis of the space of symmetric functions, thus the elements (5.7) form a
basis of

À

kPZě0
Vk. �

6. Conjugate structure

It is natural to ask if there is a way to extend ∇ to the spaces Vk recovering the
original operator at k “ 0. What we have found is that it is simpler to extend the
composition

(6.1) N pF q “ ∇ω̄F “ ∇ωF ,

where the conjugation simply makes the substitution pq, tq “ pq´1, t´1q, ωpF q “

F r´Xs is the Weyl involution up to a sign, and ω̄ denotes the composition. This
is a very interesting operator, which in fact is an antilinear involution on SymrXs

corresponding to dualizing vector bundles and tensoring with Op1q in the Haiman–
Bridgeland–King–Reid picture, which identifies SymrXs with the equivariant K-
theory of the Hilbert scheme of points in the complex plane [BKR01]. The key
to our proof is to extend this operator to an antilinear involution on every Vk,
suggesting that Vk should have a geometric interpretation as well. Since this paper



A PROOF OF THE SHUFFLE CONJECTURE 689

was completed, E. Gorsky and the authors have discovered this connection in terms
of a smooth subscheme of the flag Hilbert scheme. This will be explained in an
upcoming paper, which also explains a family of ways to extend the operator ∇
itself in addition to the involution N , also in terms of line bundles.

We will define the operator, which was discovered experimentally to have nice
properties, by explicitly constructing the action of A conjugated by the conjectural
involution N . Let A˚ “ Aq´1 , and label the corresponding generators by d˚

˘, T
˚
i , e

˚
i .

Denote by zi the image of yi under the isomorphism from A to A˚ which sends
generators to generators, and which is antilinear with respect to q ÞÑ q´1.

Theorem 6.1. There is an action of A˚ on V˚ given by the assignment

(6.2) T˚
i “ T´1

i , d˚
´ “ d´, e˚

i “ ei, pd˚
`F qrXs “ γF rX ` pq ´ 1qyk`1s,

where F P Vk and γ is the operator which sends yi to yi`1 for i “ 1, . . . , k and yk`1

to ty1. Furthermore, it satisfies the additional relations
(6.3)
zi`1d` “ d`zi, yi`1d

˚
` “ d˚

`yi, z1d` “ ´y1d
˚
`tq

k`1, d˚
`d

m
` p1q “ dm`1

` p1q

for any m ě 0.

The statement is equivalent to validity of a certain set of relations satisfied by
the operators. These will be verified in the following propositions.

First we list the obvious relations:

Proposition 6.2.

d˚
`T

´1
i “ T´1

i`1d
˚
`, T´1

1 d˚2
` “ d˚2

` , d˚
`yi “ yi`1d

˚
`.

Proof. Easy from the definition. �

To verify the rest of the relations, we use an approach similar to the one used
in the proof of Lemma 5.4. Now we need not just one, but a family of twisted
multiplications: For F P SymrXs, G P Vk, m “ 0, 1, 2, . . . , k, put

pF ˚m GqrXs “ F

«

X ` pq ´ 1q

˜

m
ÿ

i“1

tyi `

k
ÿ

i“m`1

yi

¸ff

G.

It is not hard to show that they satisfy

(6.4) d˚
`pF ˚m Gq “ F ˚m`1 d

˚
`G, d´pF ˚m Gq “ F ˚m d´G,

where F P SymrXs, and G P Vk, the first identity holds for 0 ď m ď k, and the
second one for 0 ď m ă k.

Let us first verify

Proposition 6.3.

(6.5) d´pd˚
`d´ ´ d´d

˚
`qT´1

k´1 “ q´1
pd˚

`d´ ´ d´d
˚
`qd´ pk ě 2q.

Proof. Rewrite it as

d˚
`d

2
´ ´ d´d

˚
`d´pTk´1 ` qq ` qd2´d

˚
` “ 0.

Multiplying both sides by q ´ 1 “ Tk´1 ´ 1 ` q ´ Tk´1 produces an equivalent
relation, which can be reduced to

pd˚
`d

2
´ ´ pq ` 1qd´d

˚
`d´ ` qd2´d

˚
`qpTk´1 ` qq “ 0.



690 ERIK CARLSSON AND ANTON MELLIT

Note that the image of Tk´1 ` q consists of elements which are symmetric in yk´1,
yk. Let

A “ d˚
`d

2
´ ´ pq ` 1qd´d

˚
`d´ ` qd2´d

˚
`.

It is enough to show that A vanishes on elements of Vk that are symmetric in yk´1,
yk. We have (recall that k ď 2)

ApF ˚ Gq “ F ˚1 ApGq, Ayi “ yi`1A pF P SymrXs, G P Vk, i ă k ´ 1q.

Thus it is enough to verify vanishing of A on symmetric polynomials of yk´1, yk.
We evaluate A on yak´1y

b
k:

Apyak´1y
b
kq “

`

Γ`ptpq ´ 1qy1qBa`1Bb`1 ´ pq ` 1qBa`1Γ`ptpq ´ 1qy1qBb`1

` qBa`1Bb`1Γ`ptpq ´ 1qy1q
˘

1,

where Γ`pZq is the operator F rXs Ñ F rX ` Zs. For any monomial u and integer
i, we have operator identities

Γ`puqBi “ pBi ´ uBi´1qΓ`puq, BiΓ`p´uq “ Γ`p´uqpBi ´ uBi´1q,

thus we have

Γ`ptpq ´ 1qy1qBa`1Bb`1 “ Γ`p´ty1qpBa`1 ´ qty1BaqpBa`1 ´ qty1BaqΓ`pqty1q,

Ba`1Γ`ptpq ´ 1qy1qBb`1 “ Γ`p´ty1qpBa`1 ´ ty1BaqpBa`1 ´ qty1BaqΓ`pqty1q,

Ba`1Bb`1Γ`ptpq ´ 1qy1q “ Γ`p´ty1qpBa`1 ´ ty1BaqpBa`1 ´ ty1BaqΓ`pqty1q.

Performing the cancellations, we arrive at

Apyak´1y
b
kq “ Γ`p´ty1qpty1p1 ´ qqpBaBb`1 ´ qBa`1Bbqq1.

This expression is antisymmetric in a, b by [HMZ12, Corollary 3.4]. Thus (6.5) is
true. �

Next we have to check:

Proposition 6.4.

T´1
1 pd˚

`d´ ´ d´d
˚
`qd˚

` “ q´1d˚
`pd˚

`d´ ´ d´d
˚
`q.

Proof. Multiplying both sides by qT1 and using the easier relations, rewrite it as

d˚2
` d´ ´ pT1 ` qqd˚

`d´d
˚
` ` qd´d

˚2
` “ 0.

Again, because of the commutation relations with the twisted multiplication by
symmetric functions and yi, it is enough to evaluate the left-hand side on yak for all
a P Zě0. We obtain

´ha`1r´X ´ tpq ´ 1qpy1 ` y2qs ` pT1 ` qqha`1r´X ´ tpq ´ 1qy1s ´ qha`1r´Xs.

We use the identity hnrX `Y s “
ř

i`j“n hirXshjrY s to write the left-hand side

as a linear combination of terms ha`1´br´Xs with b ą 0. The coefficient in front
of each term with b ą 0 is

´hbrtp1 ´ qqpy1 ` y2qs ` pT1 ` qqhbrtp1 ´ qqy1s.
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By a direct computation,

pT1 ` qqhbrtp1 ´ qqy1s “ pT1 ` qqp1 ´ qqtbyb1

“ p1 ´ qqtbpyb1 ` p1 ´ qq

b´1
ÿ

i“1

yi1y
b´i
2 ` yb2q “ hbrtp1 ´ qqpy1 ` y2qs,

and we are done. �

At this point, we have established the fact that the operators given by (6.2)
define an action of A˚ on V˚. Also we have established the second relation in (6.3).
The last relation is obvious. The first and the third are verified below:

Proposition 6.5.

z1d` “ ´y1d
˚
`tq

k`1, zi`1d` “ d`zi.

Proof. Using (6.4) we see that the operator y1d
˚
` satisfies the two properties,

y1d
˚
`yi “ yi`1y1d

˚
`, y1d

˚
`pF ˚ Gq “ F ˚1 y1d

˚
`pGq

for F P SymrXs, G P Vk, i “ 1, . . . , k. By definition (on Vk)

z1 “
qk´1

q´1 ´ 1
pd˚

`d´ ´ d´d
˚
`qT´1

k´1 ¨ ¨ ¨T´1
1 ,

thus (again, on Vk)

z1d` “
qk

q´1 ´ 1
pd˚

`d´ ´ d´d
˚
`qT´1

k ¨ ¨ ¨T´1
1 d`.

From this expression we see, using (6.4) once again, that z1d` satisfies the same
two properties as the operator y1d

˚
`,

z1d`yi “ yi`1z1d`, z1d`pF ˚ Gq “ F ˚1 z1d`pGq

for F P SymrXs, G P Vk, i “ 1, . . . , k. Thus it is enough to verify the first identity
on 1 P Vk. The right-hand side is ´tqk`1y1. The left-hand side is

qk

q´1 ´ 1
pd˚

` ´ 1qd´p1q “
qk

q´1 ´ 1
pX ` tpq ´ 1qy1 ´ Xq “ ´tqk`1y1,

so the first identity holds.
It is enough to verify the second identity for i “ 1 because the general case can be

deduced from this one by applying the T -operators. For the identity z2d` “ d`z1,
expressing z1, z2 in terms of d´, d

˚
` and the T -operators, we arrive at the equivalent

identity

T´1
1 d`pd˚

`d´ ´ d´d
˚
`q “ pd˚

`d´ ´ d´d
˚
`qd`.

If we denote by A either of the two sides, we have

ApF ˚ Gq “ F ˚1 ApGq, Ayi “ T2T3 ¨ ¨ ¨Ti`1yi`1pT2T3 ¨ ¨ ¨Ti`1q
´1A

for F P SymrXs, G P Vk, i “ 1, . . . , k ´ 1. Thus it is enough to verify the identity
on yak P Vk (a P Zě0). Applying T´1

k T´1
k´1 ¨ ¨ ¨T´1

2 to both sides, the identity to be
verified is

T´1
k T´1

k´1 ¨ ¨ ¨T´1
1 d`pd˚

`d´ ´ d´d
˚
`qpyakq “ pd˚

`d´ ´ d´d
˚
`qT´1

k´1 ¨ ¨ ¨T´1
1 d`pyakq.

The left-hand side is evaluated to

´ha`1r´X ´ tpq ´ 1qy1 ´ pq ´ 1qyk`1s ` ha`1r´X ´ pq ´ 1qyk`1s.
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The right-hand side is evaluated to

pd˚
`d´ ´ d´d

˚
`qTkpyak`1q “ F rX ` tpq ´ 1qy1s ´ F rXs

with

F rXs “ ´ha`1r´Xs ´ p1 ´ qq

a´1
ÿ

i“0

ya´i
k`1hi`1r´Xs

“ ´ha`1r´X ` p1 ´ qqyk`1s ` p1 ´ qqya`1
k`1,

and the identity follows. �

This completes our proof of Theorem 6.1.
We also have the following proposition, which we will use to connect the conju-

gate action with Nα.

Proposition 6.6. For a composition α of length k, let

yα “ yα1´1
1 ¨ ¨ ¨ yαk´1

k P Vk.

Then the following recursions hold:

y1α “ d˚
`yα, yaα “

t1´a

q ´ 1
pd˚

`d´ ´ d´d
˚
`q

ÿ

β|ùa´1

q1´lpβqd
lpβq´1
´ pyαβq pa ą 1q.

Proof. The first identity easily follows from the explicit formula for d˚
`. For i “

1, 2, . . . , k ´ 1, we have

pd´d
˚
` ´ d˚

`d´qyi “ yi`1pd´d
˚
` ´ d˚

`d´q.

Therefore it is enough to verify the following identity for any a P Zě1:

(6.6) pq ´ 1qtaya1 “ pd˚
`d´ ´ d´d

˚
`q

ÿ

β|ùa

q1´lpβqd
lpβq´1
´ pyβ1´1

k ¨ ¨ ¨ y
βlpβq´1

k`lpβq´1q P Vk.

We group the terms on the right-hand side by b “ β1 ´ 1, and the sum becomes

a´1
ÿ

b“0

ybk
ÿ

β|ùa´b´1

q´lpβqd
lpβq

´

´

yβ1´1
k`1 ¨ ¨ ¨ y

βlpβq´1

k`lpβq

¯

“

a´1
ÿ

b“0

ybk
ÿ

β|ùa´b´1

q´lpβq
p´1q

lpβqBβ1
¨ ¨ ¨Bβlpβq p1q “

a´1
ÿ

b“0

ybkha´b´1rq´1Xs.

We have used the identity

(6.7) hnrq´1Xs “

ÿ

α|ùn

q´lpαq
p´1q

lpαqBαp1q,

which can be obtained by applying ω̄ to Proposition 5.2 of [HMZ12]:

hnr´Xs “

ÿ

α|ùn

Cαp1q.
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Thus the right-hand side of (6.6) is evaluated to the expression

pd˚
`d´ ´ d´d

˚
`q

a´1
ÿ

b“0

ybkq
´pa´b´1qha´b´1rXs

“ ´

a´1
ÿ

b“0

pΓ`ptpq ´ 1qy1qBb`1 ´ Bb`1Γ`ptpq ´ 1qy1qqha´b´1rq´1Xs.

“ ´

a´1
ÿ

b“0

Γ`p´ty1q ppBb`1 ´ qty1Bbq ´ pBb`1 ´ ty1Bbqq pha´b´1rq´1X ` ty1sq

“ pq ´ 1qty1Γ`p´ty1q

a´1
ÿ

b“0

Bbpha´b´1rq´1X ` ty1sq.

Thus we need to prove

a´1
ÿ

b“0

Bbpha´b´1rq´1X ` ty1sq “ ta´1ya´1
1 .

Then the left-hand side as a polynomial in y1 indeed has the right coefficient of
ya´1
1 . The coefficient of yi1 for i ă a ´ 1 is

ti
a´1´i
ÿ

b“0

Bbpha´b´1´irq
´1Xsq.

So it is enough to show
m
ÿ

b“0

Bbphm´brq
´1Xsq “ 0 pm P Zą0q.

Using (6.7) again, we see that the left-hand side equals

B0phmrq´1Xsq ´ qhmrq´1Xs “ pB0 ´ qqp´q´1Cmp1qq “ 0

because B0Cm “ qCmB0 by [HMZ12, Proposition 3.5] and B0p1q “ 1. �

7. The involution

Definition 7.1. Consider A and A˚ as algebras over Qpq, tq, and let Ã “ Ãq,t be
the quotient of the free product of A and A˚ by the relations

d˚
´ “ d´, T˚

i “ T´1
i , e˚

i “ ei,

zi`1d` “ d`zi, yi`1d
˚
` “ d˚

`yi, z1d` “ ´y1d
˚
`tq

k`1.

Remark 7.2. For any k ě 0, the affine Hecke algebra AHAk is the algebra generated
over Qpqq by T1, . . . , Tk´1, y

˘1
1 , . . . , y˘1

k modulo relations

pTi ´ 1qpTi ` qq “ 0, TiTi`1Ti “ Ti`1TiTi`1, TiTj “ TjTi p|i ´ j| ą 1q,

yiTj “ Tjyi pi R tj, j ` 1uq, yiyj “ yjyi, Tiyi`1Ti “ qyi.

The positive part AHA`
k is defined as the subalgebra of AHAk generated by Ti and

yi, or equivalently as the algebra generated over Qpqq by T1, . . . , Tk´1, y1, . . . , yk
modulo the same relations. We have a natural homomorphism AHA`

k Ñ ekAek
which can be shown to be injective using Lemma 5.6. It is tempting to guess that in
a similar way the subalgebra of ekÃek generated by Ti, yi, and zi is isomorphic to the
positive part DAHA``

k of the double affine Hecke algebra DAHAk. To fix a version
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of DAHA``
k which is close to our notations, we start with relations [SV11, (2.1)–

(2.7)] and perform substitutions q “ t´1, v “ q
1
2 , Ti “ q

1
2T´1

i , Xi “ yi, Yi “ zi
followed by reversal of the order of generators in each monomial. So DAHA``

k is
defined over Qpq, tq by generators T1, . . . , Tk´1, y1, . . . , yk, z1, . . . , zk and relations
of two copies of AHAk (the second copy is transformed by Ti Ñ T´1

i , q Ñ q´1)

pTi ´ 1qpTi ` qq “ 0, TiTi`1Ti “ Ti`1TiTi`1, TiTj “ TjTi p|i ´ j| ą 1q,

yiTj “ Tjyi pi R tj, j ` 1uq, yiyj “ yjyi, Tiyi`1Ti “ qyi,

ziTj “ Tjzi pi R tj, j ` 1uq, zizj “ zjzi, TiziTi “ qzi`1,

and two extra relations. The first one is

z2y1 “ qy1T
´2
1 z2 ô qy2z1 “ z1T

2
1 y2,

which can be deduced in Ã from (5.4) and z2d` “ d`z1. The second relation is

z1y1 ¨ ¨ ¨ yk “ ty1 ¨ ¨ ¨ ykz1.

The following identity can be deduced from the rest of the relations:

y2 ¨ ¨ ¨ ykz1 “ q1´kz1T1 ¨ ¨ ¨Tk´1Tk´1 ¨ ¨ ¨T1y2 ¨ ¨ ¨ yk.

Thus we expect to have

z1y1 “ q1´k t y1z1T1 ¨ ¨ ¨Tk´1Tk´1 ¨ ¨ ¨T1.

However this does not hold in Ã. Instead we have

z1y1 “ q1´k t y1z1T1 ¨ ¨ ¨Tk´1Tk´1 ¨ ¨ ¨T1 ` qty1d´d
˚
`Tk´1 ¨ ¨ ¨T1.

So we see that we do not obtain a natural homomorphism DAHA``
k Ñ ekÃek. One

way to repair the situation is to introduce the “partially symmetrized” SDAHA``
k,8

by starting with the DAHA in infinitely many generators Ti, zi, yi (i “ 1, 2, 3, . . .),
and then symmetrizing in generators with i ą k. For instance for k “ 0, we expect
e0Ãe0 to coincide with the positive part of the elliptic Hall algebra, which is the
stable limit of spherical DAHAs as shown in [SV11]. Details of this construction
will be provided in a future publication.

We now prove

Theorem 7.3. The operations Ti, d´, d`, d˚
`, ei define an action of Ã on V˚.

Furthermore, the kernel of the natural map Ãe0 Ñ V˚ that sends fe0 to fp1q is

given by Ie0 where I Ă Ã is the ideal generated by

(7.1) I “ xd˚
`d

m
` ´ dm`1

` | m ě 0y.

In particular, we have an isomorphism V˚ – Ãe0{Ie0.

Proof. Theorem 6.1 shows that we have a map of modules Ãe0 Ñ V˚ that restricts
to the isomorphism of Theorem 5.2 on the subspace Ae0, so in particular is sur-
jective. Furthermore, the last relation of (6.3) shows that it descends to a map
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Ãe0{Ie0 ÞÑ V˚, which must still be surjective. We have the following commutative
diagram.

Ãe0{Ie0 V˚

Ae0

„

Thus we have an inclusion Ae0 Ă Ãe0{Ie0 and it remains to show that the image

of Ae0 in Ãe0{Ie0 is the entire space. We do so by induction: notice that both

Ae0 and Ãe0{Ie0 have a grading by the total degree in d`, d˚
`, and d´, as all

the relations are homogeneous. For instance, yi and zi have degree 2, and Ti has
degree 0 for all i. Denote the space of elements of degree m in Ae0, Ãe0{Ie0 by
V pmq, W pmq, respectively. We need to prove V pmq “ W pmq. The base cases m “ 0,
m “ 1 are clear.

For the induction step, suppose m ą 0, V piq “ W piq for i ď m, and let F P V pmq.
It is enough to show that d˚

`F P V pm`1q. By Lemma 5.6, we can assume that F is
in the canonical form (5.6). We therefore must check three cases: F “ dm` p1q for

1 P V0, F “ yiG for G P V pm´2q, and F “ d´pGq for G P V pm´1q. In the first case
we have d˚

`F “ dm`1
` 1. In the second case we have d˚

`pF q “ yi`1d
˚
`pGq. In the

third case we have

d˚
`F “ d˚

`d´G “ d´d
˚
`G ` pq´1

´ 1qT´1
1 ¨ ¨ ¨T´1

k´1zkG.

Now we use expansion of G in terms of the generators Ti, d`, and d´. Because of
the commutation relations between Ti and zj , it is enough to consider two cases,

G “ d`G
1 andG “ d´G

1 forG1 P V pm´2q. In the first case we have zkG “ d`zk´1G
1

if k ą 1 and z1G “ ´y1d
˚
`tG

1 if k “ 1. In the second case we have zkG “ d´zkG
1.

In all cases the claim is reduced to the induction hypothesis. �

Now by looking at the defining relations of Ã, we make the remarkable observa-
tion that there exists an involution ι of Ã that permutes A and A˚ and is antilinear
with respect to the conjugation pq, tq ÞÑ pq´1, t´1q on the ground field Qpq, tq! Fur-
thermore, this involution preserves the ideal I, and therefore induces an involution
on V˚ via the isomorphism of Theorem 7.3.

Theorem 7.4. There exists a unique antilinear degree-preserving automorphism
N : V˚ Ñ V˚ satisfying

N p1q “ 1, NTi “ T´1
i N , Nd´ “ d´N , Nd` “ d˚

`N , Nyi “ ziN .

Moreover, we have

(i) N is an involution, i.e., N 2 “ Id.
(ii) For any composition α we have

N pyαq “ q
ř

pαi´1qNα.

(iii) On V0 “ SymrXs, we have N “ ∇ω̄, where ω̄ is the involution sending q,
t, X to q´1, t´1, ´X, respectively psee (6.1)q.

Proof. The automorphism is induced from the involution of Ã, from which part (i)
follows immediately. Part (ii) follows from applying N to the relations of Proposi-
tion 6.6.
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Finally, let D1, D
˚
1 : V0 Ñ V0 be the operators

pD1F qrXs “ F rX ` p1 ´ qqp1 ´ tqu´1
sExpr´uXs|u1 ,

pD˚
1F qrXs “ F rX ´ p1 ´ q´1

qp1 ´ t´1
qu´1

sExpruXs|u1 ,

and let e1 : V0 Ñ V0 be the operator of multiplication by e1rXs “ X. It is easy to
verify that

D1 “ ´d´d
˚
`, e1 “ d´d`, ω̄D1 “ D˚

1 ω̄.

Thus it follows that
ND1 “ ´e1N , N e1 “ ´D1N .

Let ∇1 “ N ω̄ on V0. Then

∇1
p1q “ 1, ∇1e1 “ D1∇1, ∇1D˚

1 “ ´e1∇1.

It was shown in [GHT99] that ∇ satisfies the same commutation relations, and that
one can obtain all symmetric functions starting from 1 and successively applying
e1 and D˚

1 . Thus ∇ “ ∇1, proving part (iii). �
The compositional shuffle conjecture now follows easily:

Theorem 7.5. For a composition α of length k, we have

∇Cα1
¨ ¨ ¨Cαk

p1q “ DαpX; q, tq.

Proof. Using Theorems 4.11 and 7.4, we have

Dαpq, tq “ dk´pNαq “ dk´pN pq|α|´kyαqq “ N pq|α|´kdk´pyαqq

“ N
´

q|α|´k
p´1q

kBαp1q

¯

“ N ω̄Cαp1q “ ∇Cαp1q. �
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[Hag04] J. Haglund, A proof of the q, t-Schröder conjecture, Internat. Math. Res. Notices 11
(2004), 525–560.

[Hag08] J. Haglund, The q,t-Catalan numbers and the space of diagonal harmonics, University
Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008. With
an appendix on the combinatorics of Macdonald polynomials. MR2371044

[Hai01] M. Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J.
Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR1839919

[Hai02] M. Haiman, Vanishing theorems and character formulas for the Hilbert scheme of
points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR1918676

[HHL05a] J. Haglund, M. Haiman, and N. Loehr, A combinatorial formula for Macdonald poly-
nomials, J. Amer. Math. Soc. 18 (2005), no. 3, 735–761. MR2138143

[HHL`05b] J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial
formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005),
no. 2, 195–232. MR2115257

[Hic12] A. S. Hicks, Two parking function bijections: a sharpening of the q, t-Catalan and
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