Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 


On the mesh nonsingularity of the moving mesh PDE method

Authors: Weizhang Huang and Lennard Kamenski
Journal: Math. Comp.
MSC (2010): Primary 65N50, 65K10
Published electronically: October 2, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The moving mesh PDE (MMPDE) method for variational mesh generation and adaptation is studied theoretically at the discrete level, in particular the nonsingularity of the obtained meshes. Meshing functionals are discretized geometrically and the MMPDE is formulated as a modified gradient system of the corresponding discrete functionals for the location of mesh vertices. It is shown that if the meshing functional satisfies a coercivity condition, then the mesh of the semi-discrete MMPDE is nonsingular for all time if it is nonsingular initially. Moreover, the altitudes and volumes of its elements are bounded below by positive numbers depending only on the number of elements, the metric tensor, and the initial mesh. Furthermore, the value of the discrete meshing functional is convergent as time increases, which can be used as a stopping criterion in computation. Finally, the mesh trajectory has limiting meshes which are critical points of the discrete functional. The convergence of the mesh trajectory can be guaranteed when a stronger condition is placed on the meshing functional. Two meshing functionals based on alignment and equidistribution are known to satisfy the coercivity condition. The results also hold for fully discrete systems of the MMPDE provided that the time step is sufficiently small and a numerical scheme preserving the property of monotonically decreasing energy is used for the temporal discretization of the semi-discrete MMPDE. Numerical examples are presented.

References [Enhancements On Off] (What's this?)

  • [1] G. Beckett, J. A. Mackenzie, and M. L. Robertson, A moving mesh finite element method for the solution of two-dimensional Stefan problems, J. Comput. Phys. 168 (2001), no. 2, 500-518. MR 1826524,
  • [2] J. U. Brackbill and J. S. Saltzman, Adaptive zoning for singular problems in two dimensions, J. Comput. Phys. 46 (1982), no. 3, 342-368. MR 673707,
  • [3] Graham F. Carey, Computational Grids: Generation, Adaptation, and Solution Strategies, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Taylor & Francis, Washington, DC, 1997. MR 1483891
  • [4] F. Dassi, L. Kamenski, and H. Si, Tetrahedral mesh improvement using moving mesh smoothing and lazy searching flips, Procedia Eng. 163 (2016), 302-314, 25th International Meshing Roundtable.
  • [5] Arkady S. Dvinsky, Adaptive grid generation from harmonic maps on Riemannian manifolds, J. Comput. Phys. 95 (1991), no. 2, 450-476. MR 1117849,
  • [6] Lori A. Freitag and Carl Ollivier-Gooch, Tetrahedral mesh improvement using swapping and smoothing, Internat. J. Numer. Methods Engrg. 40 (1997), no. 21, 3979-4002. MR 1475347,$ \langle$3979::AID-NME251$ \rangle$3.0.CO;2-9
  • [7] Martin J. Gander and Ronald D. Haynes, Domain decomposition approaches for mesh generation via the equidistribution principle, SIAM J. Numer. Anal. 50 (2012), no. 4, 2111-2135. MR 3022212,
  • [8] I. M. Gelfand and S. V. Fomin, Calculus of Variations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0160139
  • [9] Ernst Hairer and Christian Lubich, Energy-diminishing integration of gradient systems, IMA J. Numer. Anal. 34 (2014), no. 2, 452-461. MR 3194795,
  • [10] Ronald D. Haynes and Felix Kwok, Discrete analysis of domain decomposition approaches for mesh generation via the equidistribution principle, Math. Comp. 86 (2017), no. 303, 233-273. MR 3557799,
  • [11] Weizhang Huang, Variational mesh adaptation: isotropy and equidistribution, J. Comput. Phys. 174 (2001), no. 2, 903-924. MR 1868106,
  • [12] Weizhang Huang, Metric tensors for anisotropic mesh generation, J. Comput. Phys. 204 (2005), no. 2, 633-665. MR 2131856,
  • [13] Weizhang Huang and Lennard Kamenski, A geometric discretization and a simple implementation for variational mesh generation and adaptation, J. Comput. Phys. 301 (2015), 322-337. MR 3402733,
  • [14] W. Huang, L. Kamenski, and H. Si, Mesh smoothing: an MMPDE approach, 2015, Research note at the 24th International Meshing Roundtable, WIAS Preprint No. 2130.
  • [15] Weizhang Huang, Yuhe Ren, and Robert D. Russell, Moving mesh methods based on moving mesh partial differential equations, J. Comput. Phys. 113 (1994), no. 2, 279-290. MR 1284854,
  • [16] Weizhang Huang, Yuhe Ren, and Robert D. Russell, Moving mesh partial differential equations (MMPDES) based on the equidistribution principle, SIAM J. Numer. Anal. 31 (1994), no. 3, 709-730. MR 1275109,
  • [17] Weizhang Huang and Robert D. Russell, A high-dimensional moving mesh strategy, Proceedings of the International Centre for Mathematical Sciences Conference on Grid Adaptation in Computational PDEs: Theory and Applications (Edinburgh, 1996), 1998, pp. 63-76. MR 1602828,
  • [18] Weizhang Huang and Robert D. Russell, Moving mesh strategy based on a gradient flow equation for two-dimensional problems, SIAM J. Sci. Comput. 20 (1999), no. 3, 998-1015. MR 1665654,
  • [19] Weizhang Huang and Robert D. Russell, Adaptive moving mesh methods, Applied Mathematical Sciences, vol. 174, Springer, New York, 2011. MR 2722625
  • [20] Weizhang Huang and Weiwei Sun, Variational mesh adaptation. II. Error estimates and monitor functions, J. Comput. Phys. 184 (2003), no. 2, 619-648. MR 1959407,
  • [21] W. Huang and Y. Wang, Anisotropic mesh quality measures and adaptation for polygonal meshes, submitted, arXiv:1507.08243.
  • [22] Patrick M. Knupp, Jacobian-weighted elliptic grid generation, SIAM J. Sci. Comput. 17 (1996), no. 6, 1475-1490. MR 1413711,
  • [23] Patrick M. Knupp and Nicolas Robidoux, A framework for variational grid generation: conditioning the Jacobian matrix with matrix norms, SIAM J. Sci. Comput. 21 (2000), no. 6, 2029-2047. MR 1762029,
  • [24] Patrick Knupp and Stanly Steinberg, Fundamentals of grid generation, CRC Press, Boca Raton, FL, 1994. With 1 IBM-PC floppy disk (3.5 inch; HD). MR 1300634
  • [25] M. Křížek and L. Qun, On diagonal dominance of stiffness matrices in $ 3$D, East-West J. Numer. Math. 3 (1995), no. 1, 59-69. MR 1331484
  • [26] Ruo Li, Tao Tang, and Pingwen Zhang, Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys. 170 (2001), no. 2, 562-588. MR 1844903,
  • [27] Vladimir D. Liseikin, Grid generation methods, Scientific Computation, Springer-Verlag, Berlin, 1999. MR 1707310
  • [28] Changna Lu, Weizhang Huang, and Jianxian Qiu, Maximum principle in linear finite element approximations of anisotropic diffusion-convection-reaction problems, Numer. Math. 127 (2014), no. 3, 515-537. MR 3216818,
  • [29] J. D. Pryce, On the convergence of iterated remeshing, IMA J. Numer. Anal. 9 (1989), no. 3, 315-335. MR 1011394,
  • [30] Hang Si, TetGen, a Delaunay-based quality tetrahedral mesh generator, ACM Trans. Math. Software 41 (2015), no. 2, Art. 11, 36. MR 3318083,
  • [31] A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics, vol. 2, Cambridge University Press, Cambridge, 1996. MR 1402909
  • [32] Joe F. Thompson, Z. U. A. Warsi, and C. Wayne Mastin, Numerical grid generation, North-Holland Publishing Co., New York, 1985. Foundations and applications. MR 791004
  • [33] A. M. Winslow, Adaptive mesh zoning by the equipotential method, Tech. Report UCID-19062, Lawrence Livemore Laboratory, 1981.
  • [34] X. Xu, W. Huang, R. D. Russell, and J. F. Williams, Convergence of de Boor's algorithm for the generation of equidistributing meshes, IMA J. Numer. Anal. 31 (2011), no. 2, 580-596. MR 2813185,

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N50, 65K10

Retrieve articles in all journals with MSC (2010): 65N50, 65K10

Additional Information

Weizhang Huang
Affiliation: Department of Mathematics, The University of Kansas, Lawrence, Kansas 66045

Lennard Kamenski
Affiliation: Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

Keywords: Variational mesh generation, mesh adaptation, moving mesh PDE, mesh nonsingularity, limiting mesh
Received by editor(s): December 15, 2015
Received by editor(s) in revised form: February 3, 2017
Published electronically: October 2, 2017
Additional Notes: The first author was supported by the University of Kansas General Research Fund allocation #2301056.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society