Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Numerical modular symbols for elliptic curves


Author: Christian Wuthrich
Journal: Math. Comp.
MSC (2010): Primary 11-04, 11G05, 11F67, 11Y16
DOI: https://doi.org/10.1090/mcom/3274
Published electronically: November 2, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a detailed analysis of how to implement the computation of modular symbols for a given elliptic curve by using numerical approximations. This method turns out to be more efficient than current implementations as the conductor of the curve increases.


References [Enhancements On Off] (What's this?)

  • [1] Amod Agashe, Kenneth Ribet, and William A. Stein, The Manin constant, Pure Appl. Math. Q. 2 (2006), no. 2, 617-636. MR 2251484, https://doi.org/10.4310/PAMQ.2006.v2.n2.a11
  • [2] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Seljebotn, and Kurt Smith, Cython: The best of both worlds, Computing in Science Engineering 13 (2011), no. 2, 31-39, http://cython.org/.
  • [3] Leo I. Bluestein, A linear filtering approach to the computation of the discrete Fourier transform, IEEE Northeast Electronics Research and Engineering Meeting 10 (1968), 218-219.
  • [4] Wieb Bosma, John Cannon, Claus Fieker, and Allan Steel, Handbook of Magma Function, 2.19-6 ed., 2013.
  • [5] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $ \mathbf{Q}$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843-939. MR 1839918, https://doi.org/10.1090/S0894-0347-01-00370-8
  • [6] Henri Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206
  • [7] J. E. Cremona, Algorithms for Modular Elliptic Curves, 2nd ed., Cambridge University Press, Cambridge, 1997. MR 1628193
  • [8] J. E. Cremona, The eclib package, version 20150827, available at https://github.com/JohnCremona/eclib, 2015.
  • [9] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 7.2), 2016, available from http://www.sagemath.org.
  • [10] V. G. Drinfel'd, Two theorems on modular curves, Funkcional. Anal. i Priložen. 7 (1973), no. 2, 83-84 (Russian). MR 0318157
  • [11] Bas Edixhoven, On the Manin constants of modular elliptic curves, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 25-39. MR 1085254
  • [12] Dorian Goldfeld, On the computational complexity of modular symbols, Math. Comp. 58 (1992), no. 198, 807-814. MR 1122069, https://doi.org/10.2307/2153219
  • [13] Grigor Grigorov, Andrei Jorza, Stefan Patrikis, William A. Stein, and Corina Tarniţa, Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Math. Comp. 78 (2009), no. 268, 2397-2425. MR 2521294, https://doi.org/10.1090/S0025-5718-09-02253-4
  • [14] Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. MR 1927606
  • [15] H. Iwaniec, On the error term in the linear sieve, Acta Arith. 19 (1971), 1-30. MR 0296043
  • [16] Ju. I. Manin, Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19-66 (Russian). MR 0314846
  • [17] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil curves, Invent. Math. 25 (1974), 1-61. MR 0354674, https://doi.org/10.1007/BF01389997
  • [18] B. Mazur, J. Tate, and J. Teitelbaum, On $ p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1-48. MR 830037, https://doi.org/10.1007/BF01388731
  • [19] The PARI Group, Bordeaux, PARI/GP, version 2.8.0, 2016, available from http://pari.math.u-bordeaux.fr/.
  • [20] Joseph H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., Graduate Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009. MR 2514094
  • [21] William Stein, Modular Forms, a Computational Approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048
  • [22] William A. Stein and Helena A. Verrill, Cuspidal modular symbols are transportable, LMS J. Comput. Math. 4 (2001), 170-181. MR 1901355, https://doi.org/10.1112/S146115700000084X
  • [23] William Stein and Christian Wuthrich, Algorithms for the arithmetic of elliptic curves using Iwasawa theory, Math. Comp. 82 (2013), no. 283, 1757-1792. MR 3042584, https://doi.org/10.1090/S0025-5718-2012-02649-4
  • [24] Glenn Stevens, Arithmetic on Modular Curves, Progress in Mathematics, vol. 20, Birkhäuser Boston, Inc., Boston, MA, 1982. MR 670070
  • [25] Glenn Stevens, Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math. 98 (1989), no. 1, 75-106. MR 1010156, https://doi.org/10.1007/BF01388845
  • [26] Joseph L. Wetherell et al., The pari script modsym.gp, available at http://pari.math.u-bordeaux.fr/Scripts/modsym.gp., 2002.
  • [27] Christian Wuthrich, On the integrality of modular symbols and Kato's Euler system for elliptic curves, Doc. Math. 19 (2014), 381-402. MR 3178244
  • [28] Christian Wuthrich, Sage trac ticket # 21046: Numerical modular symbols for elliptic curves, https://trac.sagemath.org/ticket/21046, 2016.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11-04, 11G05, 11F67, 11Y16

Retrieve articles in all journals with MSC (2010): 11-04, 11G05, 11F67, 11Y16


Additional Information

Christian Wuthrich
Affiliation: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
Email: christian.wuthrich@nottingham.ac.uk

DOI: https://doi.org/10.1090/mcom/3274
Received by editor(s): August 23, 2016
Received by editor(s) in revised form: January 21, 2017, and March 20, 2017
Published electronically: November 2, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society