Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime


Authors: Weizhu Bao and Chunmei Su
Journal: Math. Comp.
MSC (2010): Primary 35Q55, 65M06, 65M12, 65M15
DOI: https://doi.org/10.1090/mcom/3278
Published electronically: November 22, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish uniform error bounds of a finite difference method for the Klein-Gordon-Zakharov (KGZ) system with a dimensionless parameter $ \varepsilon \in (0,1]$, which is inversely proportional to the acoustic speed. In the subsonic limit regime, i.e., $ 0<\varepsilon \ll 1$, the solution propagates highly oscillatory waves in time and/or rapid outgoing initial layers in space due to the singular perturbation in the Zakharov equation and/or the incompatibility of the initial data. Specifically, the solution propagates waves with $ O(\varepsilon )$-wavelength in time and $ O(1)$-wavelength in space as well as outgoing initial layers in space at speed $ O(1/\varepsilon )$. This high oscillation in time and rapid outgoing waves in space of the solution cause significant burdens in designing numerical methods and establishing error estimates for KGZ system. By applying an asymptotic consistent formulation, we propose a uniformly accurate finite difference method and rigorously establish two independent error bounds at $ O(h^2+\tau ^2/\varepsilon )$ and $ O(h^2+\tau +\varepsilon )$ with $ h$ mesh size and $ \tau $ time step. Thus we obtain a uniform error bound at $ O(h^2+\tau )$ for $ 0<\varepsilon \le 1$. The main techniques in the analysis include the energy method, cut-off of the nonlinearity to bound the numerical solution, the integral approximation of the oscillatory term, and $ \varepsilon $-dependent error bounds between the solutions of KGZ system and its limiting model when $ \varepsilon \to 0^+$. Finally, numerical results are reported to confirm our error bounds.


References [Enhancements On Off] (What's this?)

  • [1] Hélène Added and Stéphane Added, Equations of Langmuir turbulence and nonlinear Schrödinger equation: smoothness and approximation, J. Funct. Anal. 79 (1988), no. 1, 183-210. MR 950090, https://doi.org/10.1016/0022-1236(88)90036-5
  • [2] Georgios D. Akrivis, Vassilios A. Dougalis, and Ohannes A. Karakashian, On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation, Numer. Math. 59 (1991), no. 1, 31-53. MR 1103752, https://doi.org/10.1007/BF01385769
  • [3] Weizhu Bao and Yongyong Cai, Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator, SIAM J. Numer. Anal. 50 (2012), no. 2, 492-521. MR 2914273, https://doi.org/10.1137/110830800
  • [4] Weizhu Bao and Yongyong Cai, Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comp. 82 (2013), no. 281, 99-128. MR 2983017, https://doi.org/10.1090/S0025-5718-2012-02617-2
  • [5] Weizhu Bao, Yongyong Cai, and Xiaofei Zhao, A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime, SIAM J. Numer. Anal. 52 (2014), no. 5, 2488-2511. MR 3268616, https://doi.org/10.1137/130950665
  • [6] Weizhu Bao and Xuanchun Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math. 120 (2012), no. 2, 189-229. MR 2874965, https://doi.org/10.1007/s00211-011-0411-2
  • [7] Weizhu Bao, Xuanchun Dong, and Xiaofei Zhao, An exponential wave integrator sine pseudospectral method for the Klein-Gordon-Zakharov system, SIAM J. Sci. Comput. 35 (2013), no. 6, A2903-A2927. MR 3138112, https://doi.org/10.1137/110855004
  • [8] Weizhu Bao and Chunmei Su, Uniform error bounds of a finite difference method for the Zakharov system in the subsonic limit regime via an asymptotic consistent formulation, Multiscale Model. Simul. 15 (2017), no. 2, 977-1002. MR 3662020, https://doi.org/10.1137/16M1078112
  • [9] Weizhu Bao and Fangfang Sun, Efficient and stable numerical methods for the generalized and vector Zakharov system, SIAM J. Sci. Comput. 26 (2005), no. 3, 1057-1088. MR 2126126, https://doi.org/10.1137/030600941
  • [10] Weizhu Bao and Xiaofei Zhao, A uniformly accurate multiscale time integrator spectral method for the Klein-Gordon-Zakharov system in the high-plasma-frequency limit regime, J. Comput. Phys. 327 (2016), 270-293. MR 3564339, https://doi.org/10.1016/j.jcp.2016.09.046
  • [11] Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185-200. MR 1294924, https://doi.org/10.1006/jcph.1994.1159
  • [12] Luc Bergé, Brigitte Bidégaray, and Thierry Colin, A perturbative analysis of the time-envelope approximation in strong Langmuir turbulence, Phys. D 95 (1996), no. 3-4, 351-379. MR 1406290, https://doi.org/10.1016/0167-2789(96)00058-9
  • [13] Y. Cai and Y. Yuan, Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime, Math. Comp., (2017). DOI:10.1090/mcom/3269.
  • [14] Markus Daub, Guido Schneider, and Katharina Schratz, From the Klein-Gordon-Zakharov system to the Klein-Gordon equation, Math. Methods Appl. Sci. 39 (2016), no. 18, 5371-5380. MR 3582567, https://doi.org/10.1002/mma.3922
  • [15] Pierre Degond, Jian-Guo Liu, and Marie-Hélène Vignal, Analysis of an asymptotic preserving scheme for the Euler-Poisson system in the quasineutral limit, SIAM J. Numer. Anal. 46 (2008), no. 3, 1298-1322. MR 2390995, https://doi.org/10.1137/070690584
  • [16] R. O. Dendy, Plasma Dynamics, Oxford University Press, Oxford, 1990.
  • [17] Bjorn Engquist and Andrew Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (1977), no. 139, 629-651. MR 0436612, https://doi.org/10.2307/2005997
  • [18] Kang Feng, Asymptotic radiation conditions for reduced wave equation, J. Comput. Math. 2 (1984), no. 2, 130-138. MR 901405
  • [19] Dan Givoli, Numerical Methods for Problems in Infinite Domains, Studies in Applied Mechanics, vol. 33, Elsevier Scientific Publishing Co., Amsterdam, 1992. MR 1199563
  • [20] R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. Comp. 58 (1992), no. 197, 83-102. MR 1106968, https://doi.org/10.2307/2153022
  • [21] Shi Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput. 21 (1999), no. 2, 441-454. MR 1718639, https://doi.org/10.1137/S1064827598334599
  • [22] Shi Jin, Peter A. Markowich, and Chunxiong Zheng, Numerical simulation of a generalized Zakharov system, J. Comput. Phys. 201 (2004), no. 1, 376-395. MR 2098862, https://doi.org/10.1016/j.jcp.2004.06.001
  • [23] R. Landes, On Galerkin's method in the existence theory of quasilinear elliptic equations, J. Funct. Anal. 39 (1980), no. 2, 123-148. MR 597807, https://doi.org/10.1016/0022-1236(80)90009-9
  • [24] Nader Masmoudi and Kenji Nakanishi, From the Klein-Gordon-Zakharov system to the nonlinear Schrödinger equation, J. Hyperbolic Differ. Equ. 2 (2005), no. 4, 975-1008. MR 2195989, https://doi.org/10.1142/S0219891605000683
  • [25] Nader Masmoudi and Kenji Nakanishi, Energy convergence for singular limits of Zakharov type systems, Invent. Math. 172 (2008), no. 3, 535-583. MR 2393080, https://doi.org/10.1007/s00222-008-0110-5
  • [26] Nader Masmoudi and Kenji Nakanishi, From the Klein-Gordon-Zakharov system to a singular nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 4, 1073-1096. MR 2659158, https://doi.org/10.1016/j.anihpc.2010.02.002
  • [27] Masahito Ohta and Grozdena Todorova, Strong instability of standing waves for the nonlinear Klein-Gordon equation and the Klein-Gordon-Zakharov system, SIAM J. Math. Anal. 38 (2007), no. 6, 1912-1931. MR 2299435, https://doi.org/10.1137/050643015
  • [28] Tohru Ozawa and Yoshio Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the Zakharov equations, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 4, 113-116. MR 1114950
  • [29] T. Ozawa, K. Tsutaya, and Y. Tsutsumi, Normal form and global solutions for the Klein-Gordon-Zakharov equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995), no. 4, 459-503. MR 1341412, https://doi.org/10.1016/S0294-1449(16)30156-1
  • [30] Tohru Ozawa, Kimitoshi Tsutaya, and Yoshio Tsutsumi, Well-posedness in energy space for the Cauchy problem of the Klein-Gordon-Zakharov equations with different propagation speeds in three space dimensions, Math. Ann. 313 (1999), no. 1, 127-140. MR 1666813, https://doi.org/10.1007/s002080050254
  • [31] Steven H. Schochet and Michael I. Weinstein, The Nonlinear Schrödinger Limit of the Zakharov equations governing Langmuir turbulence, Comm. Math. Phys. 106 (1986), no. 4, 569-580. MR 860310
  • [32] C. Su, Error estimates of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, IMA J. Numer Anal., (2017). DOI 10.1093/imanum/drx044.
  • [33] Catherine Sulem and Pierre-Louis Sulem, Quelques résultats de régularité pour les équations de la turbulence de Langmuir, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), no. 3, A173-A176. MR 552204
  • [34] Catherine Sulem and Pierre-Louis Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. MR 1696311
  • [35] Benjamin Texier, WKB asymptotics for the Euler-Maxwell equations, Asymptot. Anal. 42 (2005), no. 3-4, 211-250. MR 2138794
  • [36] Vidar Thomée, Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. MR 1479170
  • [37] Kimitoshi Tsutaya, Global existence of small amplitude solutions for the Klein-Gordon-Zakharov equations, Nonlinear Anal. 27 (1996), no. 12, 1373-1380. MR 1408877, https://doi.org/10.1016/0362-546X(95)00127-H
  • [38] Tingchun Wang, Juan Chen, and Luming Zhang, Conservative difference methods for the Klein-Gordon-Zakharov equations, J. Comput. Appl. Math. 205 (2007), no. 1, 430-452. MR 2324850, https://doi.org/10.1016/j.cam.2006.05.008
  • [39] V. E. Zakharov (ed.), Wave collapses, Elsevier Science B.V., Amsterdam, 1991. Phys. D 52 (1991), no. 1. MR 1131135
  • [40] Yu Lin Zhou, Applications of discrete functional analysis to the finite difference method, International Academic Publishers, Beijing, 1991. MR 1133399

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35Q55, 65M06, 65M12, 65M15

Retrieve articles in all journals with MSC (2010): 35Q55, 65M06, 65M12, 65M15


Additional Information

Weizhu Bao
Affiliation: Department of Mathematics, National University of Singapore, Singapore 119076
Email: matbaowz@nus.edu.sg

Chunmei Su
Affiliation: Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
Address at time of publication: Department of Mathematics, National University of Singapore, Singapore 119076
Email: sucm@csrc.ac.cn

DOI: https://doi.org/10.1090/mcom/3278
Keywords: Klein-Gordon-Zakharov system, subsonic limit, highly oscillatory, uniform error bound, finite difference method, asymptotic consistent formulation
Received by editor(s): December 30, 2016
Received by editor(s) in revised form: March 18, 2017
Published electronically: November 22, 2017
Additional Notes: The first author was supported by Singapore Ministry of Education Academic Research Fund Tier 2 R-146-000-223-112.
The second author is the corresponding author. The second author was supported by Natural Science Foundation of China Grant U1530401 and the Postdoctoral Science Foundation of China Grant 2016M600904.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society