Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

On the error estimates of the vector penalty-projection methods: Second-order scheme


Authors: Philippe Angot and Rima Cheaytou
Journal: Math. Comp.
MSC (2010): Primary 76D07, 35Q30, 65M15, 65M12
DOI: https://doi.org/10.1090/mcom/3309
Published electronically: December 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the vector penalty-projection method for incompressible unsteady Stokes equations with Dirichlet boundary conditions. The time derivative is approximated by the backward difference formula of second-order scheme (BDF2), namely Gear's scheme, whereas the approximation in space is performed by the finite volume scheme on a Marker And Cell (MAC) grid. After proving the stability of the method, we show that it yields second-error estimates in the time step for both velocity and pressure in the norm of $ l^{\infty }(\mathbf {L}^2(\Omega ))$ and $ l^2(L^2(\Omega ))$, respectively. Also, we show that the splitting error for both velocity and pressure is of order $ \mathcal {O}(\sqrt {\varepsilon \,\delta t})$ where $ \varepsilon $ is a penalty parameter chosen as small as desired and $ \delta t$ is the time step. Numerical results in agreement with the theoretical study are also provided.


References [Enhancements On Off] (What's this?)

  • [1] P. Angot, J.-P. Caltagirone, and P. Fabrie, Analysis for the fast vector penalty-projection solver of incompressible multiphase Navier-Stokes/brinkman problems, Numer. Math.
  • [2] P. Angot, J.-P. Caltagirone, and P. Fabrie, A kinematic vector penalty-projection method for incompressible flow with variable density, C. R. Math. Acad. Sci. Paris, Ser. I.
  • [3] Philippe Angot, Jean-Paul Caltagirone, and Pierre Fabrie, Vector penalty-projection methods for the solution of unsteady incompressible flows, Finite volumes for complex applications V, ISTE, London, 2008, pp. 169-176. MR 2451404
  • [4] Philippe Angot, Jean-Paul Caltagirone, and Pierre Fabrie, A spectacular vector penalty-projection method for Darcy and Navier-Stokes problems, Finite volumes for complex applications VI. Problems & perspectives. Volume 1, 2, Springer Proc. Math., vol. 4, Springer, Heidelberg, 2011, pp. 39-47. MR 2815627, https://doi.org/10.1007/978-3-642-20671-9_5
  • [5] Philippe Angot, Jean-Paul Caltagirone, and Pierre Fabrie, A fast vector penalty-projection method for incompressible non-homogeneous or multiphase Navier-Stokes problems, Appl. Math. Lett. 25 (2012), no. 11, 1681-1688. MR 2957735, https://doi.org/10.1016/j.aml.2012.01.037
  • [6] Philippe Angot, Jean-Paul Caltagirone, and Pierre Fabrie, A new fast method to compute saddle-points in constrained optimization and applications, Appl. Math. Lett. 25 (2012), no. 3, 245-251. MR 2855967, https://doi.org/10.1016/j.aml.2011.08.015
  • [7] Philippe Angot, Jean-Paul Caltagirone, and Pierre Fabrie, Fast discrete Helmholtz-Hodge decompositions in bounded domains, Appl. Math. Lett. 26 (2013), no. 4, 445-451. MR 3019973, https://doi.org/10.1016/j.aml.2012.11.006
  • [8] P. Angot and R. Cheaytou, Vector penalty-projection methods for incompressible fluid flows with open boundary conditions, in Algoritmy 2012 - (A. Handlovicočá et al. Eds), Slovak University of Technology in Bratislava, Publishing House of STU (Bratislava) (2012), 219-229.
  • [9] P. Angot and R. Cheaytou, Vector penalty-projection methods for outflow boundary conditions with optimal second-order accuracy (under revision), Comput. Fluids (2016).
  • [10] Ph. Angot, M. Jobelin, and J.-C. Latché, Error analysis of the penalty-projection method for the time dependent Stokes equations, Int. J. Finite Vol. 6 (2009), no. 1, 26. MR 2471404
  • [11] Franck Boyer and Pierre Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, vol. 183, Springer, New York, 2013. MR 2986590
  • [12] David L. Brown, Ricardo Cortez, and Michael L. Minion, Accurate projection methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 168 (2001), no. 2, 464-499. MR 1826523, https://doi.org/10.1006/jcph.2001.6715
  • [13] J.-P. Caltagirone and J. Breil, Sur une méthode de projection vectorielle pour la résolution des équations de Navier-Stokes, C. R. Math. Acad. Sci. Paris 327 (1999), no. 11, 1179-1184.
  • [14] R. Cheaytou, Etude des méthodes de pénalité-projection vectorielle pour les équations de navier-stokes avec conditions aux limites ouvertes,, Ph.D. thesis, Université d'Aix-Marseille, April 2014.
  • [15] Alexandre Joel Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745-762. MR 0242392, https://doi.org/10.2307/2004575
  • [16] Weinan E and Jian-Guo Liu, Projection method. I. Convergence and numerical boundary layers, SIAM J. Numer. Anal. 32 (1995), no. 4, 1017-1057. MR 1342281, https://doi.org/10.1137/0732047
  • [17] J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 1996. MR 1384758
  • [18] C. Févrière, J. Laminie, P. Poullet, and P. Angot, On the penalty-projection method for the Navier-Stokes equations with the MAC mesh, J. Comput. Appl. Math. 226 (2009), no. 2, 228-245. MR 2501639, https://doi.org/10.1016/j.cam.2008.08.014
  • [19] Michel Fortin and Roland Glowinski, Augmented Lagrangian methods: Applications to the numerical solution of boundary value problems, Studies in Mathematics and its Applications, vol. 15, North-Holland Publishing Co., Amsterdam, 1983. MR 724072
  • [20] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows, J. Comput. Phys. 30 (1979), no. 1, 76-95.
  • [21] Jean-Luc Guermond, Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale, M2AN Math. Model. Numer. Anal. 33 (1999), no. 1, 169-189. MR 1685751, https://doi.org/10.1051/m2an:1999101
  • [22] J. L. Guermond, P. Minev, and J. Shen, Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions, SIAM J. Numer. Anal. 43 (2005), no. 1, 239-258. MR 2177143, https://doi.org/10.1137/040604418
  • [23] Jean-Luc Guermond and Jie Shen, Quelques résultats nouveaux sur les méthodes de projection, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 12, 1111-1116 (French, with English and French summaries). MR 1881243, https://doi.org/10.1016/S0764-4442(01)02157-7
  • [24] J. L. Guermond and Jie Shen, A new class of truly consistent splitting schemes for incompressible flows, J. Comput. Phys. 192 (2003), no. 1, 262-276. MR 2045709, https://doi.org/10.1016/j.jcp.2003.07.009
  • [25] J. L. Guermond and Jie Shen, Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal. 41 (2003), no. 1, 112-134. MR 1974494, https://doi.org/10.1137/S0036142901395400
  • [26] J. L. Guermond and Jie Shen, On the error estimates for the rotational pressure-correction projection methods, Math. Comp. 73 (2004), no. 248, 1719-1737. MR 2059733, https://doi.org/10.1090/S0025-5718-03-01621-1
  • [27] J. L. Guermond, P. Minev, and Jie Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 44-47, 6011-6045. MR 2250931, https://doi.org/10.1016/j.cma.2005.10.010
  • [28] J. L. Guermond, Jie Shen, and Xiaofeng Yang, Error analysis of fully discrete velocity-correction methods for incompressible flows, Math. Comp. 77 (2008), no. 263, 1387-1405. MR 2398773, https://doi.org/10.1090/S0025-5718-08-02109-1
  • [29] Francis H. Harlow and J. Eddie Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids 8 (1965), no. 12, 2182-2189. MR 3155392
  • [30] M. Jobelin, C. Lapuerta, J.-C. Latché, Ph. Angot, and B. Piar, A finite element penalty-projection method for incompressible flows, J. Comput. Phys. 217 (2006), no. 2, 502-518. MR 2260612, https://doi.org/10.1016/j.jcp.2006.01.019
  • [31] Hans Johnston and Jian-Guo Liu, Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, J. Comput. Phys. 199 (2004), no. 1, 221-259. MR 2081004, https://doi.org/10.1016/j.jcp.2004.02.009
  • [32] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Statist. Comput. 7 (1986), no. 3, 870-891. MR 848569, https://doi.org/10.1137/0907059
  • [33] George Em. Karniadakis, Moshe Israeli, and Steven A. Orszag, High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 97 (1991), no. 2, 414-443. MR 1137607, https://doi.org/10.1016/0021-9991(91)90007-8
  • [34] O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, Second English edition, revised and enlarged. Vol. 2, Gordon and Breach, Science Publishers, New York-London-Paris, 1969. MR 0254401
  • [35] J. Leray, Essai sur les mouvements plans d'un liquide visqueux que limitent des parois, J. Math. Pures Appl. 13 (1934), 331-418.
  • [36] S.A. Orszag, M. Israeli, and M.O. Deville, Boundary conditions for incompressible flows, J. Sci. Comput. 1 (1986), 75-111.
  • [37] A. Poux, S. Glockner, E. Ahusborde, and M. Azaïez, Open boundary conditions for the velocity-correction scheme of the Navier-Stokes equations, Comput. & Fluids 70 (2012), 29-43. MR 2988624, https://doi.org/10.1016/j.compfluid.2012.08.028
  • [38] Jae-Hong Pyo and Jie Shen, Normal mode analysis of second-order projection methods for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B 5 (2005), no. 3, 817-840. MR 2151734, https://doi.org/10.3934/dcdsb.2005.5.817
  • [39] Rolf Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, The Navier-Stokes Equations II--Theory and Numerical Methods (Oberwolfach, 1991) Lecture Notes in Math., vol. 1530, Springer, Berlin, 1992, pp. 167-183. MR 1226515, https://doi.org/10.1007/BFb0090341
  • [40] Jie Shen, On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations, Numer. Math. 62 (1992), no. 1, 49-73. MR 1159045, https://doi.org/10.1007/BF01396220
  • [41] Jie Shen, On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes, Math. Comp. 65 (1996), no. 215, 1039-1065. MR 1348047, https://doi.org/10.1090/S0025-5718-96-00750-8
  • [42] Jie Shen and Xiaofeng Yang, Error estimates for finite element approximations of consistent splitting schemes for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B 8 (2007), no. 3, 663-676. MR 2328729, https://doi.org/10.3934/dcdsb.2007.8.663
  • [43] R. Témam, Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II, Arch. Rational Mech. Anal. 33 (1969), 377-385 (French). MR 0244654, https://doi.org/10.1007/BF00247696
  • [44] Roger Temam, Navier-Stokes Equations, Revised edition, Studies in Mathematics and its Applications, vol. 2, North-Holland Publishing Co., Amsterdam-New York, 1979. Theory and Numerical Analysis; With an appendix by F. Thomasset. MR 603444
  • [45] L. J. P. Timmermans, P. D. Minev, and F. N. van de Vosse, An approximate projection scheme for incompressible flow using spectral elements, Internat. J. Numer. Methods Fluids 22 (1996), no. 7, 673-688. MR 3363448, https://doi.org/10.1002/(SICI)1097-0363(19960415)22:7$ \langle$673::AID-FLD373$ \rangle$3.0.CO;2-O

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 76D07, 35Q30, 65M15, 65M12

Retrieve articles in all journals with MSC (2010): 76D07, 35Q30, 65M15, 65M12


Additional Information

Philippe Angot
Affiliation: Aix-Marseille Université, Institut de Mathématiques de Marseille (I2M) - CNRS UMR7373, Centrale Marseille, 13453 Marseille cedex 13 - France
Email: philippe.angot@univ-amu.fr

Rima Cheaytou
Affiliation: Aix-Marseille Université, Institut de Mathématiques de Marseille (I2M) - CNRS UMR7373, Centrale Marseille, 13453 Marseille cedex 13 - France
Email: rima.cheaytou@gmail.com

DOI: https://doi.org/10.1090/mcom/3309
Received by editor(s): November 18, 2016
Received by editor(s) in revised form: April 12, 2017
Published electronically: December 27, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society