Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

Search for good examples of Hall's conjecture


Authors: Stål Aanderaa, Lars Kristiansen and Hans Kristian Ruud
Journal: Math. Comp.
MSC (2010): Primary 11Y50, 65A05; Secondary 11D25
DOI: https://doi.org/10.1090/mcom/3298
Published electronically: January 18, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A good example of Hall's conjecture is a pair of natural numbers $ x,y$ such that $ 0 < \vert x^3 - y^2\vert < x^{1/2}$. We have implemented a new algorithm and found nine not previously known good examples. Moreover, we have verified that all good examples with $ x < 10^{29}$ are now found.


References [Enhancements On Off] (What's this?)

  • [1] I. Jiménez Calvo, J. Herranz, and G. Sáez, A new algorithm to search for small nonzero $ \vert x^3-y^2\vert$ values, Math. Comp. 78 (2009), no. 268, 2435-2444. MR 2521296, https://doi.org/10.1090/S0025-5718-09-02240-6
  • [2] L. V. Danilov, The Diophantine equation $ x^{3}-y^{2}=k$ and a conjecture of M. Hall, Mat. Zametki 32 (1982), no. 3, 273-275, 425 (Russian). MR 677595
  • [3] Noam D. Elkies, Rational points near curves and small nonzero $ \vert x^3-y^2\vert$ via lattice reduction, Algorithmic number theory (Leiden, 2000) Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 33-63. MR 1850598, https://doi.org/10.1007/10722028_2
  • [4] Marshall Hall Jr., The Diophantine equation $ x^{3}-y^{2}=k$, Computers in number theory (Proc. Sci. Res. Council Atlas Sympos. No. 2, Oxford, 1969) Academic Press, London, 1971, pp. 173-198. MR 0323705
  • [5] J. Gebel, A. Pethö, and H. G. Zimmer, On Mordell's equation, Compositio Math. 110 (1998), no. 3, 335-367. MR 1602064, https://doi.org/10.1023/A:1000281602647
  • [6] A. Ya. Khintchine, Continued Fractions, Translated by Peter Wynn, P. Noordhoff, Ltd., Groningen, 1963. MR 0161834
  • [7] Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., John Wiley & Sons, Inc., New York, 1991. MR 1083765
  • [8] http://ijcalvo.galeon.com/hall.htm

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 11Y50, 65A05, 11D25

Retrieve articles in all journals with MSC (2010): 11Y50, 65A05, 11D25


Additional Information

Stål Aanderaa
Affiliation: Department of Mathematics University of Oslo P.O. Box 1053 Blindern NO-0316 Oslo Norway
Email: staal@math.uio.no

Lars Kristiansen
Affiliation: Department of Mathematics University of Oslo P.O. Box 1053 Blindern NO-0316 Oslo Norway
Email: larsk@math.uio.no

Hans Kristian Ruud
Affiliation: Department of Mathematics University of Oslo P.O. Box 1053 Blindern NO-0316 Oslo Norway

DOI: https://doi.org/10.1090/mcom/3298
Received by editor(s): November 15, 2015
Received by editor(s) in revised form: November 16, 2016, and May 17, 2017
Published electronically: January 18, 2018
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society