Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials

Authors: Éliane Bécache, Patrick Joly and Valentin Vinoles
Journal: Math. Comp.
MSC (2010): Primary 35B35, 35L05, 35L40, 35Q61, 65M12
Published electronically: March 29, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This work deals with Perfectly Matched Layers (PMLs) in the context of dispersive media, and in particular for Negative Index Metamaterials (NIMs). We first present some properties of dispersive isotropic Maxwell equations that include NIMs. We propose and analyse the stability of very general PMLs for a large class of dispersive systems using a new change of variable. We give necessary criteria for the stability of such models that show in particular that the classical PMLs applied to NIMs are unstable and we confirm this numerically. For dispersive isotropic Maxwell equations, this analysis is completed by giving necessary and sufficient conditions of stability. Finally, we propose new PMLs that satisfy these criteria and demonstrate numerically their efficiency.

References [Enhancements On Off] (What's this?)

  • [1] Daniel Appelö, Thomas Hagstrom, and Gunilla Kreiss, Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability, SIAM J. Appl. Math. 67 (2006), no. 1, 1–23. MR 2272612,
  • [2] E. Bécache, S. Fauqueux, and P. Joly, Stability of perfectly matched layers, group velocities and anisotropic waves, J. Comput. Phys. 188 (2003), no. 2, 399–433. MR 1985305,
  • [3] Éliane Bécache, Patrick Joly, Maryna Kachanovska, and Valentin Vinoles, Perfectly matched layers in negative index metamaterials and plasmas, CANUM 2014—42e Congrès National d’Analyse Numérique, ESAIM Proc. Surveys, vol. 50, EDP Sci., Les Ulis, 2015, pp. 113–132 (English, with English and French summaries). MR 3416041,
  • [4] Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185–200. MR 1294924,
  • [5] Guy Bouchitté, Christophe Bourel, and Didier Felbacq, Homogenization of the 3D Maxwell system near resonances and artificial magnetism, C. R. Math. Acad. Sci. Paris 347 (2009), no. 9-10, 571–576 (English, with English and French summaries). MR 2576911,
  • [6] Guy Bouchitté and Ben Schweizer, Homogenization of Maxwell’s equations in a split ring geometry, Multiscale Model. Simul. 8 (2010), no. 3, 717–750. MR 2609637,
  • [7] D. Correia and J.-M. Jin, 3d-fdtd-pml analysis of left-handed metamaterials, Microwave and optical technology letters 40 (2004), no. 3, 201-205.
  • [8] T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, Springer, 2010.
  • [9] S. A. Cummer, Perfectly matched layer behavior in negative refractive index materials, Antennas and Wireless Propagation Letters, IEEE 3 (2004), no. 1, 172-175.
  • [10] E. Demaldent and S. Imperiale, Perfectly matched transmission problem with absorbing layers: application to anisotropic acoustics in convex polygonal domains, Internat. J. Numer. Methods Engrg. 96 (2013), no. 11, 689–711. MR 3138002,
  • [11] J. Diaz and P. Joly, A time domain analysis of PML models in acoustics, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 29-32, 3820–3853. MR 2221776,
  • [12] X. T. Dong, X. S. Rao, Y. B. Gan, B. Guo, and W. Y. Yin, Perfectly matched layer-absorbing boundary condition for left-handed materials, Microwave and Wireless Components Letters, IEEE 14 (2004), no. 6, 301-303.
  • [13] Kenneth Duru and Gunilla Kreiss, A well-posed and discretely stable perfectly matched layer for elastic wave equations in second order formulation, Commun. Comput. Phys. 11 (2012), no. 5, 1643–1672. MR 2877658,
  • [14] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845
  • [15] L. Halpern, S. Petit-Bergez, and J. Rauch, The analysis of matched layers, Confluentes Math. 3 (2011), no. 2, 159–236. MR 2807107,
  • [16] John David Jackson, Classical electrodynamics, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1975. MR 0436782
  • [17] Patrick Joly, An elementary introduction to the construction and the analysis of perfectly matched layers for time domain wave propagation, SeMA J. 57 (2012), 5–48. MR 2897124
  • [18] Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452
  • [19] Heinz-Otto Kreiss and Jens Lorenz, Initial-boundary value problems and the Navier-Stokes equations, Classics in Applied Mathematics, vol. 47, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2004. Reprint of the 1989 edition. MR 2067443
  • [20] P.-R. Loh, A. F. Oskooi, M. Ibanescu, M. Skorobogatiy, and S. G. Johnson, Fundamental relation between phase and group velocity, and application to the failure of perfectly matched layers in backward-wave structures, Physical Review E 79 (2009), no. 6, 065601.
  • [21] S. O'Brien and J. B. Pendry, Photonic band-gap effects and magnetic activity in dielectric composites, Journal of Physics: Condensed Matter 14 (2002), no. 15, 4035.
  • [22] J. B. Pendry, Negative refraction makes a perfect lens, Physical review letters 85 (2000), no. 18, 3966.
  • [23] Y. Shi, Y. Li, and C.-H. Liang, Perfectly matched layer absorbing boundary condition for truncating the boundary of the left-handed medium, Microwave and optical technology letters 48 (2006), no. 1, 57-63.
  • [24] D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Metamaterials and negative refractive index, Science 305 (2004), no. 5685, 788-792.
  • [25] A. Tip, Linear dispersive dielectrics as limits of drude-lorentz systems., Physical review. E, Statistical, nonlinear, and soft matter physics 69 (2004), no. 1 Pt 2, 016610-016610.
  • [26] V. G. Veselago, The electrodynamics of substances with simultaneously negative values epsilon and mu, Soviet physics uspekhi 10 (1968), no. 4, 509.
  • [27] V. Vinoles, Problèmes d'interface en présence de métamatériaux: modélisation, analyse et simulations, Ph.D. thesis, Université Paris-Saclay, 2016.
  • [28] R. W. Ziolkowski and E. Heyman, Wave propagation in media having negative permittivity and permeability, Physical review E 64 (2001), no. 5, 056625.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 35B35, 35L05, 35L40, 35Q61, 65M12

Retrieve articles in all journals with MSC (2010): 35B35, 35L05, 35L40, 35Q61, 65M12

Additional Information

Éliane Bécache
Affiliation: Laboratoire Poems, UMR 7231 CNRS/Inria/ENSTA ParisTech, ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762 Palaiseau, France

Patrick Joly
Affiliation: Laboratoire Poems, UMR 7231 CNRS/Inria/ENSTA ParisTech, ENSTA ParisTech, 828, Boulevard des Maréchaux, 91762 Palaiseau, France

Valentin Vinoles
Affiliation: École Polytechnique Fédérale de Lausanne, SB MATHAA CAMA, Station 8, CH-1015 Lausanne, Switzerland

Keywords: Perfectly matched layer (PML), dispersive system, negative index metamaterial (NIM), stability, Maxwell equations
Received by editor(s): June 6, 2016
Received by editor(s) in revised form: February 14, 2017, and June 15, 2017
Published electronically: March 29, 2018
Additional Notes: The third author was partially supported by the ANR project METAMATH (ANR-11-MONU-0016)
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society