Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

Request Permissions   Purchase Content 
 
 

 

An $ hp$-adaptive Newton-discontinuous-Galerkin finite element approach for semilinear elliptic boundary value problems


Authors: Paul Houston and Thomas P. Wihler
Journal: Math. Comp.
MSC (2010): Primary 65N30
DOI: https://doi.org/10.1090/mcom/3308
Published electronically: January 24, 2018
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we develop an $ hp$-adaptive procedure for the numerical solution of general second-order semilinear elliptic boundary value problems, with possible singular perturbation. Our approach combines both adaptive Newton schemes and an $ hp$-version adaptive discontinuous Galerkin finite element discretisation, which, in turn, is based on a robust $ hp$-version a posteriori residual analysis. Numerical experiments underline the robustness and reliability of the proposed approach for various examples.


References [Enhancements On Off] (What's this?)

  • [1] Patrick R. Amestoy, Iain S. Duff, Jean-Yves L'Excellent, and Jacko Koster, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), no. 1, 15-41. MR 1856597, https://doi.org/10.1137/S0895479899358194
  • [2] P. R. Amestoy, I. S. Duff, and J.-Y. L'Excellent, Multifrontal parallel distributed symmetricand unsymmetric solvers, Comput. Methods Appl. Mech. Eng. 184 (2000), 501-520.
  • [3] Patrick R. Amestoy, Abdou Guermouche, Jean-Yves L'Excellent, and Stéphane Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Comput. 32 (2006), no. 2, 136-156. MR 2202663, https://doi.org/10.1016/j.parco.2005.07.004
  • [4] Mario Amrein and Thomas P. Wihler, An adaptive Newton-method based on a dynamical systems approach, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), no. 9, 2958-2973. MR 3182870, https://doi.org/10.1016/j.cnsns.2014.02.010
  • [5] M. Amrein and T. P. Wihler, Fully adaptive Newton-Galerkin methods for semilinear elliptic partial differential equations, SIAM J. Sci. Comput. 37 (2015), no. 4, A1637-A1657.
  • [6] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749-1779. MR 1885715, https://doi.org/10.1137/S0036142901384162
  • [7] Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Classics in Applied Mathematics, vol. 13, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. Corrected reprint of the 1988 original. MR 1351005
  • [8] G. Barles and J. Burdeau, The Dirichlet problem for semilinear second-order degenerate elliptic equations and applications to stochastic exit time control problems, Comm. Partial Differential Equations 20 (1995), no. 1-2, 129-178. MR 1312703, https://doi.org/10.1080/03605309508821090
  • [9] A. Barone, F. Esposito, C.J. Magee, and A.C. Scott, Theory and applications of the Sine-Gordon equation, Riv. Nuovo Cim. 1 (1971), 227-267.
  • [10] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82 (1983), no. 4, 313-345. MR 695535, https://doi.org/10.1007/BF00250555
  • [11] Christine Bernardi, Jad Dakroub, Gihane Mansour, and Toni Sayah, A posteriori analysis of iterative algorithms for a nonlinear problem, J. Sci. Comput. 65 (2015), no. 2, 672-697. MR 3411283, https://doi.org/10.1007/s10915-014-9980-4
  • [12] Alla Borisyuk, Bard Ermentrout, Avner Friedman, and David Terman, Tutorials in Mathematical Biosciences. I, Lecture Notes in Mathematics, vol. 1860, Springer-Verlag, Berlin, 2005. Mathematical neuroscience; Mathematical Biosciences Subseries. MR 2160827
  • [13] D. Calvetti and L. Reichel, Iterative methods for large continuation problems, J. Comput. Appl. Math. 123 (2000), no. 1-2, 217-240. Numerical analysis 2000, Vol. III. Linear algebra. MR 1798527, https://doi.org/10.1016/S0377-0427(00)00405-2
  • [14] Robert Stephen Cantrell and Chris Cosner, Spatial Ecology via Reaction-diffusion Equations, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2003. MR 2191264
  • [15] Alexandra L. Chaillou and Manil Suri, Computable error estimators for the approximation of nonlinear problems by linearized models, Comput. Methods Appl. Mech. Engrg. 196 (2006), no. 1-3, 210-224. MR 2270132, https://doi.org/10.1016/j.cma.2006.03.008
  • [16] Alexandra L. Chaillou and Manil Suri, A posteriori estimation of the linearization error for strongly monotone nonlinear operators, J. Comput. Appl. Math. 205 (2007), no. 1, 72-87. MR 2324826, https://doi.org/10.1016/j.cam.2006.04.041
  • [17] K. Andrew Cliffe, Edward J. C. Hall, Paul Houston, Eric T. Phipps, and Andrew G. Salinger, Adaptivity and a posteriori error control for bifurcation problems I: the Bratu problem, Commun. Comput. Phys. 8 (2010), no. 4, 845-865. MR 2673766, https://doi.org/10.4208/cicp.290709.120210a
  • [18] Scott Congreve and Paul Houston, Two-grid $ hp$-version discontinuous Galerkin finite element methods for quasi-Newtonian fluid flows, Int. J. Numer. Anal. Model. 11 (2014), no. 3, 496-524. MR 3218335
  • [19] Scott Congreve, Paul Houston, Endre Süli, and Thomas P. Wihler, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: strongly monotone quasi-Newtonian flows, IMA J. Numer. Anal. 33 (2013), no. 4, 1386-1415. MR 3119721, https://doi.org/10.1093/imanum/drs046
  • [20] Scott Congreve, Paul Houston, and Thomas P. Wihler, Two-grid $ hp$-version discontinuous Galerkin finite element methods for second-order quasilinear elliptic PDEs, J. Sci. Comput. 55 (2013), no. 2, 471-497. MR 3044183, https://doi.org/10.1007/s10915-012-9644-1
  • [21] Scott Congreve and Thomas P. Wihler, Iterative Galerkin discretizations for strongly monotone problems, J. Comput. Appl. Math. 311 (2017), 457-472. MR 3552717
  • [22] Leszek Demkowicz, Computing with $ hp$-Adaptive Finite Elements. Vol. 1: One and Two Dimensional Elliptic and Maxwell Problems, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2007. MR 2267112
  • [23] Peter Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, Springer Series in Computational Mathematics, vol. 35, Springer-Verlag, Berlin, 2004. MR 2063044
  • [24] Vít Dolejší, Alexandre Ern, and Martin Vohralík, $ hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems, SIAM J. Sci. Comput. 38 (2016), no. 5, A3220-A3246. MR 3556071, https://doi.org/10.1137/15M1026687
  • [25] Leah Edelstein-Keshet, Mathematical Models in Biology, Classics in Applied Mathematics, vol. 46, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005. Reprint of the 1988 original. MR 2131632
  • [26] T. Eibner and J. M. Melenk, An adaptive strategy for $ hp$-FEM based on testing for analyticity, Comput. Mech. 39 (2007), no. 5, 575-595. MR 2288643, https://doi.org/10.1007/s00466-006-0107-0
  • [27] Linda El Alaoui, Alexandre Ern, and Martin Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 37-40, 2782-2795. MR 2811915, https://doi.org/10.1016/j.cma.2010.03.024
  • [28] Alexandre Ern and Martin Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), no. 4, A1761-A1791. MR 3072765, https://doi.org/10.1137/120896918
  • [29] Alexandre Ern and Martin Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal. 53 (2015), no. 2, 1058-1081. MR 3335498, https://doi.org/10.1137/130950100
  • [30] Thomas Fankhauser, Thomas P. Wihler, and Marcel Wirz, The $ hp$-adaptive FEM based on continuous Sobolev embeddings: isotropic refinements, Comput. Math. Appl. 67 (2014), no. 4, 854-868. MR 3163883, https://doi.org/10.1016/j.camwa.2013.05.024
  • [31] Eduardo M. Garau, Pedro Morin, and Carlos Zuppa, Convergence of an adaptive Kačanov FEM for quasi-linear problems, Appl. Numer. Math. 61 (2011), no. 4, 512-529. MR 2754575, https://doi.org/10.1016/j.apnum.2010.12.001
  • [32] J. D. Gibbon, I. N. James, and I. M. Moroz, The sine-Gordon equation as a model for a rapidly rotating baroclinic fluid, Phys. Scripta 20 (1979), no. 3-4, 402-408. MR 544484, https://doi.org/10.1088/0031-8949/20/3-4/015
  • [33] Weimin Han, A posteriori error analysis for linearization of nonlinear elliptic problems and their discretizations, Math. Methods Appl. Sci. 17 (1994), no. 7, 487-508. MR 1277301, https://doi.org/10.1002/mma.1670170702
  • [34] Paul Houston, Dominik Schötzau, and Thomas P. Wihler, An $ hp$-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28, 3224-3246. MR 2220917, https://doi.org/10.1016/j.cma.2005.06.012
  • [35] Paul Houston, Dominik Schötzau, and Thomas P. Wihler, Energy norm a posteriori error estimation of $ hp$-adaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci. 17 (2007), no. 1, 33-62. MR 2290408, https://doi.org/10.1142/S0218202507001826
  • [36] Endre Süli and Paul Houston, Adaptive finite element approximation of hyperbolic problems, Error estimation and adaptive discretization methods in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., vol. 25, Springer, Berlin, 2003, pp. 269-344. MR 1948323, https://doi.org/10.1007/978-3-662-05189-4_6
  • [37] Paul Houston and Endre Süli, A note on the design of $ hp$-adaptive finite element methods for elliptic partial differential equations, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 2-5, 229-243. MR 2105162, https://doi.org/10.1016/j.cma.2004.04.009
  • [38] Paul Houston, Endre Süli, and Thomas P. Wihler, A posteriori error analysis of $ hp$-version discontinuous Galerkin finite-element methods for second-order quasi-linear elliptic PDEs, IMA J. Numer. Anal. 28 (2008), no. 2, 245-273. MR 2401198, https://doi.org/10.1093/imanum/drm009
  • [39] Paul Houston and Thomas P. Wihler, Adaptive energy minimisation for $ hp$-finite element methods, Comput. Math. Appl. 71 (2016), no. 4, 977-990. MR 3461273, https://doi.org/10.1016/j.camwa.2016.01.002
  • [40] Ohannes A. Karakashian and Frederic Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374-2399. MR 2034620, https://doi.org/10.1137/S0036142902405217
  • [41] M. Karkulik and J. M. Melenk, Local high-order regularization and applications to $ hp$-methods, Comput. Math. Appl. 70 (2015), no. 7, 1606-1639. MR 3396963, https://doi.org/10.1016/j.camwa.2015.06.026
  • [42] J. M. Melenk and B. I. Wohlmuth, On residual-based a posteriori error estimation in $ hp$-FEM, Adv. Comput. Math. 15 (2001), no. 1-4, 311-331 (2002). A posteriori error estimation and adaptive computational methods. MR 1887738, https://doi.org/10.1023/A:1014268310921
  • [43] William F. Mitchell and Marjorie A. McClain, A comparison of $ hp$-adaptive strategies for elliptic partial differential equations, ACM Trans. Math. Software 41 (2014), no. 1, Art. 2, 39. MR 3274112, https://doi.org/10.1145/2629459
  • [44] A. Mohsen, A simple solution of the Bratu problem, Comput. Math. Appl. 67 (2014), no. 1, 26-33. MR 3141702, https://doi.org/10.1016/j.camwa.2013.10.003
  • [45] A. Mohsen, L. F. Sedeek, and S. A. Mohamed, New smoother to enhance multigrid-based methods for Bratu problem, Appl. Math. Comput. 204 (2008), no. 1, 325-339. MR 2458371, https://doi.org/10.1016/j.amc.2008.06.058
  • [46] W.-M. Ni, The Mathematics of Diffusion, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 82, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011.
  • [47] Akira Okubo and Simon A. Levin, Diffusion and Ecological Problems: Modern Perspectives, 2nd ed., Interdisciplinary Applied Mathematics, vol. 14, Springer-Verlag, New York, 2001. MR 1895041
  • [48] Hans Rudolf Schneebeli and Thomas P. Wihler, The Newton-Raphson method and adaptive ODE solvers, Fractals 19 (2011), no. 1, 87-99. MR 2776742, https://doi.org/10.1142/S0218348X11005191
  • [49] Dominik Schötzau, Christoph Schwab, and Andrea Toselli, Mixed $ hp$-DGFEM for incompressible flows, SIAM J. Numer. Anal. 40 (2002), no. 6, 2171-2194 (2003). MR 1974180, https://doi.org/10.1137/S0036142901399124
  • [50] Pavel Šolín, Karel Segeth, and Ivo Doležel, Higher-order finite element methods, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2004. MR 2000261
  • [51] Benjamin Stamm and Thomas P. Wihler, $ hp$-optimal discontinuous Galerkin methods for linear elliptic problems, Math. Comp. 79 (2010), no. 272, 2117-2133. MR 2684358, https://doi.org/10.1090/S0025-5718-10-02335-5
  • [52] Walter A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149-162. MR 0454365
  • [53] R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation, Numer. Math. 78 (1998), no. 3, 479-493. MR 1603287, https://doi.org/10.1007/s002110050322
  • [54] T. P. Wihler, P. Frauenfelder, and C. Schwab, Exponential convergence of the $ hp$-DGFEM for diffusion problems, Comput. Math. Appl. 46 (2003), no. 1, 183-205. $ p$-FEM2000: $ p$ and $ hp$ finite element methods--mathematics and engineering practice (St. Louis, MO). MR 2015278, https://doi.org/10.1016/S0898-1221(03)90088-5
  • [55] Liang Zhu, Stefano Giani, Paul Houston, and Dominik Schötzau, Energy norm a posteriori error estimation for $ hp$-adaptive discontinuous Galerkin methods for elliptic problems in three dimensions, Math. Models Methods Appl. Sci. 21 (2011), no. 2, 267-306. MR 2776669, https://doi.org/10.1142/S0218202511005052
  • [56] Liang Zhu and Dominik Schötzau, A robust a posteriori error estimate for $ hp$-adaptive DG methods for convection-diffusion equations, IMA J. Numer. Anal. 31 (2011), no. 3, 971-1005. MR 2832787, https://doi.org/10.1093/imanum/drp038

Similar Articles

Retrieve articles in Mathematics of Computation with MSC (2010): 65N30

Retrieve articles in all journals with MSC (2010): 65N30


Additional Information

Paul Houston
Affiliation: School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
Email: Paul.Houston@nottingham.ac.uk

Thomas P. Wihler
Affiliation: Mathematics Institute, University of Bern, CH-3012 Bern, Switzerland
Email: wihler@math.unibe.ch

DOI: https://doi.org/10.1090/mcom/3308
Keywords: Newton method, semilinear elliptic problems, adaptive finite element methods, discontinuous Galerkin methods, $hp$-adaptivity.
Received by editor(s): July 22, 2016
Received by editor(s) in revised form: April 7, 2017, and May 31, 2017
Published electronically: January 24, 2018
Additional Notes: The second author acknowledges the support of the Swiss National Science Foundation (SNF), Grant No. 200021-162990
Article copyright: © Copyright 2018 American Mathematical Society

American Mathematical Society