The reciprocal sum of the amicable numbers

Authors:
Hanh My Nguyen and Carl Pomerance

Journal:
Math. Comp.

MSC (2010):
Primary 11A25, 11N25, 11N64

DOI:
https://doi.org/10.1090/mcom/3362

Published electronically:
April 10, 2018

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we improve on several earlier attempts to show that the reciprocal sum of the amicable numbers is small, showing this sum is .

**[1]**Jonathan Bayless and Paul Kinlaw,*Consecutive coincidences of Euler’s function*, Int. J. Number Theory**12**(2016), no. 4, 1011–1026. MR**3484296**, https://doi.org/10.1142/S1793042116500639**[2]**Jonathan Bayless and Dominic Klyve,*On the sum of reciprocals of amicable numbers*, Integers**11**(2011), no. 3, 315–332. MR**2988065**, https://doi.org/10.1515/integ.2011.025**[3]**Olivier Bordellès,*An inequality for the class number*, JIPAM. J. Inequal. Pure Appl. Math.**7**(2006), no. 3, Article 87, 8. MR**2257286****[4]**Jan Büthe,*Estimating 𝜋(𝑥) and related functions under partial RH assumptions*, Math. Comp.**85**(2016), no. 301, 2483–2498. MR**3511289**, https://doi.org/10.1090/mcom/3060- [5]
J. Büthe,
*An analytic method for bounding*, Math. Comp., to appear, https://doi.org/10.1090/mcom/3264. Also see arxiv.org 1511.02032[math.NT]. - [6]
S. Chernykh,
*Amicable pairs list*, https://sech.me/ap/index.html. **[7]**Pierre Dusart,*Explicit estimates of some functions over primes*, Ramanujan J.**45**(2018), no. 1, 227–251. MR**3745073**, https://doi.org/10.1007/s11139-016-9839-4**[8]**P. Erdös,*On amicable numbers*, Publ. Math. Debrecen**4**(1955), 108–111. MR**0069198**- [9]
H. M. Nguyen,
*The reciprocal sum of the amicable numbers*, Senior honors thesis, Mathematics, Dartmouth College, 2014. **[10]**Su Hee Kim and Carl Pomerance,*The probability that a random probable prime is composite*, Math. Comp.**53**(1989), no. 188, 721–741. MR**982368**, https://doi.org/10.1090/S0025-5718-1989-0982368-4**[11]**Elvin Lee,*On divisibility by nine of the sums of even amicable pairs*, Math. Comp.**23**(1969), 545–548. MR**0248074**, https://doi.org/10.1090/S0025-5718-1969-0248074-6- [12]
J. D. Lichtman,
*The reciprocal sum of primitive nondeficient numbers*, arXiv:1801.01925v2[math.NT], 2018. **[13]**Jared D. Lichtman and Carl Pomerance,*Explicit estimates for the distribution of numbers free of large prime factors*, J. Number Theory**183**(2018), 1–23. MR**3715225**, https://doi.org/10.1016/j.jnt.2017.08.039**[14]**H. L. Montgomery and R. C. Vaughan,*The large sieve*, Mathematika**20**(1973), 119–134. MR**0374060**, https://doi.org/10.1112/S0025579300004708- [15]
D. Platt and T. Trudgian,
*Improved bounds on Brun's constant*, arXiv:1803.01925v1 [math.NT]. **[16]**Carl Pomerance,*On the distribution of amicable numbers. II*, J. Reine Angew. Math.**325**(1981), 183–188. MR**618552**, https://doi.org/10.1515/crll.1981.325.183**[17]**Carl Pomerance,*On amicable numbers*, Analytic number theory, Springer, Cham, 2015, pp. 321–327. MR**3467405****[18]**J. Barkley Rosser and Lowell Schoenfeld,*Approximate formulas for some functions of prime numbers*, Illinois J. Math.**6**(1962), 64–94. MR**0137689**

Retrieve articles in *Mathematics of Computation*
with MSC (2010):
11A25,
11N25,
11N64

Retrieve articles in all journals with MSC (2010): 11A25, 11N25, 11N64

Additional Information

**Hanh My Nguyen**

Affiliation:
Applied Predictive Technologies, Inc., 4250 N Fairfax Dr., 11th Floor, Arlington, Virginia 22203

Email:
hanhmn91@gmail.com

**Carl Pomerance**

Affiliation:
Mathematics Department, Dartmouth College, Hanover, New Hampshrie 03755

Email:
carl.pomerance@dartmouth.edu

DOI:
https://doi.org/10.1090/mcom/3362

Received by editor(s):
August 12, 2017

Received by editor(s) in revised form:
August 14, 2017, and January 30, 2018

Published electronically:
April 10, 2018

Article copyright:
© Copyright 2018
American Mathematical Society