linear equations in \(n \) unknowns by successive approximations? The dis-
cussion given in Whittaker and Robinson, *The Calculus of Observations*
(London, 1924, and third ed., 1940, p. 255–256), is not satisfactory. The part
purporting to show that the process always improves a trial solution
suffers the following simple exception:

\[
2x + y = 1, \quad x + 3y = -1.
\]

Here the initial solution \(x = 1/2, y = -1/3 \) is not improved by replacing
\(x \) by 2/3 as required by the process.

D. H. L.

QUERIES—REPLIES

8. Tables of \(N^{3/2}(Q5, \text{p. } 131) \).—Another table for three-halves powers
of numbers to more than three places is T. 70, p. 290 of J. T. Fanning, *A
Practical Treatise on Hydraulic and Water-Supply Emergency*, tenth ed.,
New York, 1892, where \(N = [0.04(0.01)0.20(0.02)1.0(0.1)4; 4D] \).

H. B.

CORRIGENDA

P. 2, l. 31, for Reply to Query 6, *read* Reply-to-Query 6. P. 6, l. 6, for v. 4, *read* v. 14.
P. 9, 76 for Chapman, *read* Chapin. P. 14, l. 5 from bottom, *for* 0.001, *read* 0.0001.
P. 15, l. 6, *add* Also, p. 224–224c, sin \(x \), cos \(x \) to 10D, log \(x \), log cos \(x \) to 5D,
\(x = 0.1(0.1)0.10(0.1)100. \) P. 15–16, *omit* references to Hayashi tables of sin \(3\pi x \), cos \(3\pi x \),
l. 13–14 from bottom of p. 15; also to tables of Kolkmeijer and Buergier, top of p. 16.
P. 16, l. 8 from bottom, *for* Spoon, *read* Spon. P. 18, l. 1 and 2 from bottom, *for* 6D,
read 6D–7D. P. 19, l. 3 from bottom, *for* \(x \), \(\cdots \) 3D, *read* \(x = [0.00(0.01)0.1(0.1)10(1-
100)(10)1000; 3D] \). P. 20, footnote, l. 6, after “109.” *insert* With the aid of the entries
presented the logarithms of all numbers \(N = 1(1)109 \) are readily found. P. 47, 90, l. 3,
P. 70, 8, l. 2, *for* 10D, *read* 9D–10D; l. 4, *for* 0(1/2)(13/2), *read* 0(1/2)6\(\Delta \)l. 5, *for* \(1/2\pi \) read \(\pi \)l. 4, [this was a mistake in the Report]; 10, l. 3, *for* by degrees, *read* at three-degree intervals; 12, l. 3, *for* \(80^\circ 1 \), *read* \(80^\circ 1 \). P. 73, 44, l. 2, *for* roman, not ital.; 49, l. 4, *for* 0.0(0.1)10.0 *read* 0.0(0.1)7(1)10. P. 74, 52, l. 20, *for* \(J_\nu \) and \(J_\lambda \), *read* \(I_\nu \) and \(I_\lambda \); 56, l. 4, *for* 120, *read* 120. 0, *read* in UMT 9, totals, make the following changes: 390
for 391; Poulet 65 (*for* 68); Escott 233 (*for* 235); and add Poulet and Gérardin 4 (1929).
P. 109, l. 17–18, *for* \(J_\nu(a) ; 20–22, *for* these lines read, the roots of
\(J_\nu(x)N_\nu(kx) - J_\nu(kx)N_\nu(x) = 0 \) on p. 204 of nos. 3–5, p. 274 of no. 2, and p. 162 of no.
1, the first three roots for the value \(k = 2 \) should be 3.1917, 6.3116, and 9.4446 according
to values given in Muskat, · · ·. P. 108, l. 17, *for* Debeye, *read* Debye.
P. 125, l. 20–23, *for* numbers, *read* figures. P. 138, 26, l. 4, *for* \(J_{\nu+1}(x) \), *read* \(J_{\nu+1}(x) \); *for* uncertain four-
thread approximate fifth; l. 5, *for* \(J_{\nu+1}(x) \), *read* \(J_{\nu+1}(x) \); l. 5–6, *for* uncertainties,
read approximate fifths; l. 7, *for* \(1/(n + 1) \), *read* \(1/(n + 1) \). P. 140, no. 38, *for* \(\delta \), *read* \(\partial \), and \(\delta z^2 \), *read* \(\partial z \) and \(\partial z^2 \). P. 143, l. 4 from bottom, *for* every, *read* each. P. 145, for line 8,
read place tables for A with D = 0.0000(0.0001)2.0000(0.001)4.00(0.01)6.94; and for S
with \(D = 0.3000(0.0001)2.0000(0.001)4.00(0.01)6.94 \). P. 157, l. 16–17, *for* \(B_n(a) \) and \(B_n(a) \) (1), *read* \(B_n(a) \) (1)/n! and \(B_n(a) \) (1)/n! *P. 161, l. 11, delete “P. 54, F(35°, 30°), for
0.6220, *read* 6200.” P. 161, l. 13, *for* 1035, *read* 1037. P. 164, l. 11 from bottom, eliminate
l. 6 from bottom, *for* kksdratov, *read* kvsdratov; l. 4 from bottom, *read* Izdatyel'stvo.