linear equations in n unknowns by successive approximations? The discussion given in Whittaker and Robinson, The Calculus of Observations (London, 1924, and third ed., 1940, p. 255-256), is not satisfactory. The part purporting to show that the process always improves a trial solution suffers the following simple exception:

$$
2 x+y=1, \quad x+3 y=-1
$$

Here the initial solution $x=1 / 2, y=-1 / 3$ is not improved by replacing x by $2 / 3$ as required by the process.

D. H. L.

QUERIES-REPLIES

8. Tables of $N^{3 / 2}(Q 5, \mathrm{p} .131)$.-Another table for three-halves powers of numbers to more than three places is T. 70, p. 290 of J. T. Fanning, A Practical Treatise on Hydraulic and Water-Supply Emergency, tenth ed., New York, 1892, where $N=[0.04(0.01) 0.20(0.02) 1.0(0.1) 4 ; 4 \mathrm{D}]$.

H. B.

CORRIGENDA

P. 2, 1. 31, for Reply to Query 6, read Reply-to-Query 6. P. 6, 1. 6, for v. 4, read v. 14. P. 9, 76 for Chapman, read Chapin. P. 14, 1. 5 from bottom, for 0.001 , read 0.0001 . P. 15, 1. 6, add Also, p. 224-224c, $\sin x, \cos x$ to $10 \mathrm{D}, \log \sin x, \log \cos x$ to 5D, $x=0(.1) 10,0(1) 100$. P. 15-16, omit references to Hayashi tables of $\sin \frac{1}{2} x \pi, \cos \frac{1}{2} x \pi$, 1. 13-14 from bottom of p. 15; also to tables of Kolkmeijer and Buerger, top of p. 16. P. 16, 1. 8 from bottom, for Spoon, read Spon. P. 18. 1. 1 and 2 from bottom, for 6D, read 6D-7D. P. 19, 1. 3 from bottom, for $x, \cdots 3 \mathrm{D}]$, read $x=[0.00(0.01) 1.0(0.1) 10(1)-$ 100(10)1000; 3D]. P. 20, footnote, 1. 6, after " 109." insert With the aid of the entries presented the logarithms of all numbers $N=1(1) 109$ are readily found. P. 47, 90, 1. 3, for State, read City. P. 69, 2, 1. 3, for Houghton, read Haughton; 3, 1. 1, for 12S, read $10 \mathrm{~S}-12 \mathrm{~S} ; 5$ and 6 , for with differences, read with first differences.
P. 70, 8, 1. 2, for 10D, read 9D-10D; 1. 4, for 0(1/2)(13/2), read $0\left(\frac{1}{2}\right) 6 \frac{1}{2} ; 1.5$, for $\frac{1}{4} n \pi$ read $\frac{1}{2} n \pi$, [this was a mistake in the Report]; 10, 1. 3, for by degrees, read at three-degree intervals; 12, 1. 3, for $80^{\circ} 1$, read 80°.1. P. $73,44,1.2$, Ei in roman, not ital.; 49, 1. 4, for $0.0(0.1) 10.0$ read $0.0(0.1) 7(1) 10$. P. 74, 52, 1. 20, for $J_{k}{ }^{0}$ and $J_{k}{ }^{1}$, read $I_{k}{ }^{0}$ and $I_{k}{ }^{1}$; 56, 1. 4, for 120, read 12.0. P. 96, in UMT 9, totals, make the following changes: 390 for 391 ; Poulet 65 (for 68); Escott 233 (for 235); and add Poulet and Gérardin 4 (1929). P. 109, 1. 17-18, for $J_{1}(17)$, read $J_{1}\left(x_{17}\right) ; 1.20-22$, for these lines read, the roots of $J_{1}(x) N_{1}(k x)-J_{1}(k x) N_{1}(x)=0$ on p. 204 of nos. 3-5, p. 274 of no. 2 , and p. 162 of no. 1 , the first three roots for the value $k=2$ should be $3.1917,6.3116$, and 9.4446 according to values given in Muskat, … P. 108, 1. 17, for Debeye, read Debye.
P. 125, 1. 20-23, for numbers, read figures. P. 138, 26, 1. 4, for $J_{+\frac{3}{3}}(x)$, read $J_{ \pm \frac{1}{3}}(x)$; for uncertain fourth, read approximate fifth; 1. 5, for $J_{+\frac{1}{6}}(x)$, read $J_{ \pm \frac{1}{6}}(x)$; 1. 5-6, for uncertainties, read approximate fifths; 1. 7, for $\frac{1}{4}(n+1)$, read $\frac{1}{4} /(n+1)$. P. 140, no. 38, for ∂x, and ∂x^{2}, read $\partial \nu$ and $\partial \nu^{2}$. P. 143, 1. 4 from bottom, for einen, read einem. P. 145, for line 8, read: place tables for A with $\mathrm{D}=0.0000(0.0001) 2.000(0.001) 4.00(0.01) 6.94$; and for S with $\mathrm{D}=0.3000(0.0001) 2.000(0.001) 4.00(0.01) 6.94$. P. 157, 1.16-17, for $B_{n}{ }^{(n)}(0)$ and $B_{n}^{(n)}(1)$, read $B_{n}{ }^{(n)}(0) / n!$ and $B_{n}{ }^{(n)}(1) / n!$ P. 161, 1. 11, delete "P. $54, \mathrm{~F}\left(35^{\circ}, 30^{\circ}\right)$, for 0.6220 , read 6200. .' P. 161, 1. 13, for 1035 , read 1037. P. 164, 1. 11 from bottom, eliminate the second "10;'. P. 168, 1. 26, for Küster, read Küstner. P. 169, 1. 27, read Physical; 1. 6 from bottom, for kkadratov, read kvadratov; 1. 4 from bottom, read Izdatyel'stvo.

