On p. 67 is a table of the last 26 figures for each of 35 values of 9^n, $n = 89, 100, 200, \ldots, 387420489$. Thus the last 26 figures of N are found to be

$$24\ 178799\ 359681\ 422627\ 177289.$$

These results check with those quoted above, except in the case of the first of the McIntyre figures. Weiss gives also two tables and formulae for finding last figures of 9^n.

J. W. Meares in Br. Astron. Assoc., J., v. 31, 1921, p. 277–278, comments on $9!^{(10^{10})}$ and finds that its value is greater than 10 to the power $10^{2000000}$ but less than 10 to the power $10^{2000001}$.

R. C. A.

1 In accordance with British usage, Crommelin here means 1000×10^{16}; in the United States this would be interpreted as 1000×10^{16}.

55. A NEW RESULT CONCERNING A MERSENNE NUMBER.—(Compare N. 23, 33, v. 1, p. 333, 404). On 9 February 1946 I finished testing the character of the Mersenne number $M_{229} = 2^{229} - 1 = 8627\ 18293\ 34882\ 04734\ 29344\ 8278\ 46281\ 81556\ 38862\ 15212\ 98319\ 39531\ 55279\ 74911$. Since the final residue, the 228th, was not zero the conclusion is that M_{229} is composite.

The Lucasian sequence used was $4, 14, 194, 37634, 416317954$, etc.

The 228th residue was found to be $91126\ 86257\ 27776\ 96596\ 41856\ 06805\ 84362\ 68648\ 91891$.

Thus, among these numbers M_p, up to and including $p = 257$, there are only three whose characters are unknown, namely: $p = 193, 199, 227$. There are, however, eleven M_p, known to be composite, but of which no factor is known.

I have begun a similar investigation of M_{199}.

12 Hawthorne Avenue
Hamden 14, Connecticut

HORACE S. UHLER

17. TABLES FOR CIRCLES.—In O. G. Gregory, Mathematics for Practical Men, London, 1825, p. 406, after “A Table of Circles, from which knowing the diameters, the areas, circumferences, and sides of equal squares are found,” by Goodwyn (see MTE 81), Gregory remarks that this table was “to supersede the necessity of consulting some erroneous tables of the areas, &c. of circles recently put into circulation.” What author and publication are here indicated? The English Catalogue lists the following anonymous item issued in the following year: Tables of Areas and Circumferences of Circles, 3 parts, London, 1826.

R. C. A.
logarithms of numbers \([100001(1)101000; 14D]\) and the square roots of integers \([1(1)200; 11D]\), with first differences in each case.

Albert E. Lownes

16 Barberry Hill
Providence, Rhode Island

Editorial Note: At present only four existing copies of these extra pages are known to us. Rather extensive inquiry suggests that the copy owned by Mr. Lownes may be the only one in America.

22. Integral and Functional Tables.—(Q15, p. 459).—With reference to tables of \(\int_0^\beta e^{-\alpha x}dx\), I should like to draw attention to my paper "An approximate method for calculating heat flow in an infinite medium heated by a cylinder," Phys. Soc. London, Proc., v. 56, 1944, p. 365, where I have given a rough chart of this integral \([2\pi^{-1}\int_0^{\beta} e^{-\alpha x}dx]\) for a complex argument \([\beta = 0(15^\circ)90^\circ; \alpha = 0(.1).3(.2).7, 1]\), together with formulae for computation in a number of cases.

S. Whitehead
British Electrical and Allied Industries
Research Assoc., London, England

23. Roots of the Equation \(\tan x = cx\) (Q8, v. 1, p. 203; QR10, p. 336; 17, p. 459).—The NDRC report, Tables for Solutions of the Wave Equation for Rectangular and Circular Boundaries having Finite Impedance (see MTAC, v. 1, p. 438-440) has (in a different notation) the first four roots (i.e. the first four branches of the functions) of the equations \(\tan x = cx\), \(\tanh x = cx\), \(\cot x = cx\), and \(\coth x = cx\), tabulated as functions of the complex variable \(c\). We have obtained expansions of \(x\) in powers of \(c\) and \(1/c\) (used in preparation of the above mentioned NDRC report) from which one can easily compute values on the other branches or improve the accuracy of the above tables. We also have theoretical material and other types of expansions for the regions about the singularities of the inverse functions. This material is in our possession at the NYMTP, but is as yet available only to certain Government agencies and activities.

A. P. Hillman & H. E. Salzer

CORRIGENDA

V. 1

P. 205, l. 17, for \(j_n, x\), read \(j_{n,x}/x\).
P. 213, A3 38, l. 3, add \(x = 0(.5)12\); B4 4, for 5D, read 4D.
P. 214, B3 13, for \(e^{2\theta}, \alpha e^{2\theta}\), and for 4, read 4A; B17, for \(J_1(\xi x)e^{-x^2}; J_1(\zeta x)e^{-x^2}\).
P. 215, B5 8, add also 5D, \(= 1(1)8\); B22, for \(\alpha, \beta\), read \(\alpha\).
P. 217, C5 3, delete \(\leq 14D\); D7, l. 3, when \(n = 10, 11\), read \(s = 3, 3\).
P. 221, A1 1, delete \(x \geq 21.6\); A1 4, for \(x \geq 21.6\), read \(x \geq 21.6\), for each \(n\); A5 6, for \(Y_n(x), Y_1(x), X_{10}(x), X_{10}(x), Y_{10}(x), Y_{10}(x)\), and transfer these two entries as C8 8, 9.
P. 223, A12 12, for \(x < 1\), read first zero.
P. 226, A12 13, for 5D, read 5S, and for 4D, read 4S.
P. 227, A18 28, for \(O_k, x, x\), read \(O_k, x, x^2\).
P. 241, B5 5, for \(J_{-1/4}(\xi x), J_{-1/4}(\xi x)\), and for 41.035, read 41.305.
P. 245, l. 14, for \(E_n(x), \alpha\), read \(E_n(x), \alpha\).
P. 251, B16, read 4D, \(K_n(x), \alpha\), Seeliger, \(x = .25(.01).105\).
P. 284, l. 13, for \(Y_n(x), \alpha, \beta\), read \(Y_n(x), \alpha\) for each \(n\), for.